首页> 外文学位 >Design of Sulfur Tolerant Transition Metal Catalysts and Oxide Based Oxygen Evolution Electrocatalysts.
【24h】

Design of Sulfur Tolerant Transition Metal Catalysts and Oxide Based Oxygen Evolution Electrocatalysts.

机译:耐硫过渡金属催化剂和氧化物基产氧电催化剂的设计。

获取原文
获取原文并翻译 | 示例

摘要

In chemical industry, one of the main challenges is to improve the activity and selectivity of heterogeneous catalysts by designing new materials. The catalytic properties of a transition metal can be altered by alloying the metal catalyst with another metal; or by utilizing it in its transition metal oxide form where the idea of mixed metals can be utilized as well. The mentioned catalytic changes are in many cases, due to the modifications in the electronic structure of the transition metal system since the electronic characteristics are the key factors determining the activity and selectivity of many of the late transition metal based heterogeneous catalysts. Therefore, establishing a basic understanding of the electronic structures of the catalysts, understanding how the surface electronic structure varies due to alloying, effects of adsorbate coverage, and the mixed metals in metal oxides is essential to understand the variations in the catalytic properties of the systems. The main objective of this dissertation is to utilize an atomistic level approach to develop an understanding of the modifications in the electronic characteristics of the transition metal based catalysts. The presented approach provides a critical development towards the rational design of new bimetallic systems with desirable electronic and thus, chemical properties. This is illustrated, for determining sulfur tolerant metallic systems and designing transition metal based oxides for oxygen evolution reaction.;As being one of most challenging processes in the chemical industry, sulfur poisoning of a transition metal based catalyst has been studied and changes in the reactivity of the catalyst have been explained through the adsorbate-induced modifications in the electronic structures of the metal system. We present a tight-bonding approach, parameterized by a database of density functional theory calculations to model the effect of simple adsorbates and alloying on the surface electronic characteristics. The proposed model could be used as a first step towards predicting the properties of transition metal based systems and designing surface structures with desirable electronic and thus chemical properties. We demonstrate the feasibility of the proposed model by identifying sulfur tolerant bimetallic surfaces using a screening approach.;Similar to the understanding in the reactivities of metallic systems, it is desirable to establish activity-structure relation for transition metal oxide based systems. To tackle the problem, computational experiments have been performed to study the oxygen evolution reaction (OER) in detail over oxide surfaces. The findings of the computational approach have guided the experimental studies where high surface area mixed-metal oxide catalysts with enhanced reactivity were synthesized for the OER.
机译:在化学工业中,主要挑战之一是通过设计新材料来提高非均相催化剂的活性和选择性。过渡金属的催化性能可以通过使金属催化剂与另一种金属合金化来改变;或者以过渡金属氧化物的形式使用它,也可以使用混合金属的概念。由于电子特性是决定许多后过渡金属基非均相催化剂的活性和选择性的关键因素,因此在许多情况下,上述提及的催化变化是由于过渡金属系统电子结构的改变而引起的。因此,建立对催化剂电子结构的基本了解,了解表面电子结构如何因合金化,吸附物覆盖范围的影响以及金属氧化物中的混合金属而变化是了解系统催化性能变化的关键。 。本论文的主要目的是利用原子能级方法对过渡金属基催化剂的电子特性进行改进。提出的方法为合理设计具有所需电子特性和化学特性的新型双金属系统提供了关键性的进展。说明了这一点,用于确定耐硫的金属体系并设计用于氧释放反应的过渡金属基氧化物。作为化学工业中最具挑战性的方法之一,已经研究了过渡金属基催化剂的硫中毒并改变了反应性通过在金属体系的电子结构中由吸附物引起的改性解释了催化剂的组成。我们提出了一种紧密结合的方法,该方法由密度泛函理论计算的数据库进行参数化,以模拟简单的吸附物和合金化对表面电子特性的影响。所提出的模型可以用作预测基于过渡金属的系统的性能以及设计具有所需电子特性和化学特性的表面结构的第一步。通过使用筛选方法鉴定耐硫的双金属表面,我们证明了该模型的可行性。类似于对金属体系反应性的理解,希望为基于过渡金属氧化物的体系建立活性-结构关系。为了解决该问题,已经进行了计算实验以详细研究氧化物表面上的氧释放反应(OER)。计算方法的发现指导了实验研究,其中合成了具有增强反应性的高表面积混合金属氧化物催化剂用于OER。

著录项

  • 作者

    Inoglu, Gul Nilay.;

  • 作者单位

    Carnegie Mellon University.;

  • 授予单位 Carnegie Mellon University.;
  • 学科 Engineering Chemical.
  • 学位 Ph.D.
  • 年度 2011
  • 页码 193 p.
  • 总页数 193
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号