首页> 外文学位 >Laser-material interaction of powerful ultrashort laser pulses.
【24h】

Laser-material interaction of powerful ultrashort laser pulses.

机译:强大的超短激光脉冲的激光材料相互作用。

获取原文
获取原文并翻译 | 示例

摘要

Laser-material interaction of powerful (up to a terawatt) ultrashort (several picoseconds or shorter) laser pulses and laser-induced effects were investigated theoretically in this dissertation. Since the ultrashort laser pulse (USLP) duration time is much smaller than the characteristic time of the hydrodynamic expansion and thermal diffusion, the interaction occurs at a solid-like material density with most of the light energy absorbed in a thin surface layer. Powerful USLP creates hot, high-pressure plasma, which is quickly ejected without significant energy diffusion into the bulk of the material. Thus collateral damage is reduced. These and other features make USLLs attractive for a variety of applications. The purpose of this dissertation was development of the physical models and numerical tools for improvement of our understanding of the process and as an aid in optimization of the USLP applications.; The study is concentrated on two types of materials—simple metals (materials like aluminum or copper) and wide-bandgap dielectrics (fused silica, water). First, key physical phenomena of the ultrashort light interaction with metals and the models needed to describe it are presented. Then, employing one-dimensional plasma hydrodynamics code enhanced with models for laser energy deposition and material properties at low and moderate temperatures, light absorption was self-consistently simulated as a function of laser wavelength, pulse energy and length, angle of incidence and polarization.; Next, material response on time scales much longer than the pulse duration was studied using the hydrocode and analytical models. These studies include examination of evolution of the pressure pulses, effects of the shock waves, material ablation and removal and three-dimensional dynamics of the ablation plume.; Investigation of the interaction with wide-bandgap dielectrics was stimulated by the experimental studies of the USLP surface ablation of water (water is a model of biological tissue) and laser-induced pressure waves. Simulations on the basis of the nonlinear ionization equation were used to examine effects of the laser created surface plasma on light absorption, reflection and transmission. Laser pulse energy conversion efficiency into pressure waves was studied experimentally and theoretically.
机译:本文从理论上研究了强大的(高达兆瓦级)超短(几皮秒或更短)激光脉冲的材料相互作用和激光诱导效应。由于超短激光脉冲(USLP)的持续时间比流体动力膨胀和热扩散的特征时间小得多,因此相互作用发生在固态材料密度下,大部分光能吸收在薄表面层中。强大的USLP可以产生高温高压等离子体,该等离子体可以快速喷射出来,而能量不会大量扩散到大部分材料中。因此减少了附带损害。这些和其他功能使USLL在各种应用中具有吸引力。本文的目的是开发物理模型和数值工具,以提高我们对过程的理解,并有助于优化USLP应用程序。研究集中在两种类型的材料上:简单金属(铝或铜之类的材料)和宽带隙电介质(熔融石英,水)。首先,介绍了超短光与金属相互作用的关键物理现象及其描述所需的模型。然后,使用在激光模型中增强的一维等离子体流体力学代码,在低温和中温条件下对激光能量沉积和材料特性进行模拟,根据激光波长,脉冲能量和长度,入射角和偏振函数自一致地模拟光吸收。 ;接下来,使用水力代码和分析模型研究了比脉冲持续时间长得多的时间尺度上的材料响应。这些研究包括检查压力脉冲的演变,冲击波的影响,材料的烧蚀和去除以及烧蚀羽流的三维动力学。通过对水(水是生物组织的模型)的USLP表面烧蚀和激光诱导的压力波的实验研究,促进了与宽带隙电介质相互作用的研究。基于非线性电离方程的模拟用于检查激光产生的表面等离子体对光吸收,反射和透射的影响。实验和理论研究了激光脉冲能量转换成压力波的效率。

著录项

  • 作者单位

    University of California, Davis.;

  • 授予单位 University of California, Davis.;
  • 学科 Physics Fluid and Plasma.; Physics Optics.
  • 学位 Ph.D.
  • 年度 2003
  • 页码 228 p.
  • 总页数 228
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类 等离子体物理学;光学;
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号