首页> 外文学位 >Photographic study and modeling of critical heat flux in horizontal flow and vertical upflow boiling with inlet vapor void.
【24h】

Photographic study and modeling of critical heat flux in horizontal flow and vertical upflow boiling with inlet vapor void.

机译:具有入口蒸气空隙的水平流动和垂直向上沸腾的临界热通量的摄影研究和建模。

获取原文
获取原文并翻译 | 示例

摘要

This study explores the mechanism of flow boiling critical heat flux (CHF) in a 2.5 mm x 5 mm rectangular channel that is heated along one of its walls for horizontal and vertical upflow configurations. Using FC-72 as working fluid, experiments were performed with mass velocities ranging from 185-1600 kg/m2s. A key objective of this study is to assess the influence of inlet vapor void on CHF. This influence is examined with the aid of high-sped video motion analysis of interfacial features at heat fluxes up to CHF as well as during the CHF transient.;For horizontal configuration the flow is observed to enter the heated portion of the channel separated into two layers, with vapor residing above liquid. Just prior to CHF, a third vapor layer begins to develop at the leading edge of the heated wall beneath the liquid layer. Because of buoyancy effects and mixing between the three layers, the flow is less discernible in the downstream region of the heated wall, especially at high mass velocities. The observed behavior is used to construct a new separated three-layer model that facilitates the prediction of individual layer velocities and thicknesses. Combining the predictions of the new three-layer model with the Interfacial Lift-off CHF Model provides good CHF predictions for all mass velocities, evidenced by a MAE of 11.63%.;For vertical upflow configuration the flow is observed to enter the heated portion of the channel separated into two regions, with vapor residing between the liquid. At CHF-, the flow consists of a large central vapor core with liquid flowing near the walls. In the inlet region, a wavy vapor layer develops along the heated wall between a thin liquid layer and the heated wall. This vapor layer evolves immediately at the leading edge of the heated wall. The wall layers undergo gradual thinning along the channel due to increases in flow velocities and shear stresses. CHF increases monotonically with increases in mass velocity, inlet quality and outlet quality. With a MAE of 24.28%, the two-phase viscosity relation by Owens [38] provides the best most accurate predictions of pressure drop among the different two-phase friction factor and viscosity methods tested in conjunction with HEM. Among four rectangular channel and two circular channel CHF correlations tested, a correlation by Mishima & Ishii [44] provides the best predictions of the present data, with a MAE of 20.78%.
机译:这项研究探索了在2.5 mm x 5 mm矩形通道中沿其一壁加热并用于水平和垂直向上流动配置的流沸腾临界热通量(CHF)的机制。使用FC-72作为工作流体,以185-1600 kg / m2s的质量速度进行了实验。这项研究的主要目的是评估入口蒸气空隙对CHF的影响。通过对高达CHF的热通量以及CHF瞬态过程中的界面特征进行高速视频运动分析,可以检查这种影响。对于水平配置,观察到流量进入通道的加热部分,并分成两部分层,蒸气残留在液体上方。刚好在CHF之前,在液体层下面的加热壁的前缘开始形成第三蒸气层。由于浮力效应和三层之间的混合作用,在加热壁的下游区域,尤其是在高质量速度下,流动难以辨别。观察到的行为用于构建新的分离的三层模型,该模型有助于预测各个层的速度和厚度。将新的三层模型的预测与界面剥离CHF模型相结合,可为所有质量速度提供良好的CHF预测,MAE为11.63%.;对于垂直上流构造,观察到流动进入了加热的部分通道分为两个区域,蒸气停留在液体之间。在CHF-处,流由一个较大的中央蒸气核组成,液体在壁附近流动。在入口区域中,在薄液体层和加热壁之间沿着加热壁形成波浪状的蒸汽层。该蒸气层在加热壁的前边缘立即放出。由于流速和剪切应力的增加,壁层沿通道逐渐变薄。 CHF随着质量速度,入口质量和出口质量的增加而单调增加。在MAE为24.28%的情况下,Owens [38]的两相粘度关系提供了在结合HEM进行测试的不同两相摩擦系数和粘度方法中,最准确的压力降预测。在测试的四个矩形通道和两个圆形通道CHF相关性中,Mishima&Ishii [44]的相关性提供了当前数据的最佳预测,其MAE为20.78%。

著录项

  • 作者

    Kharangate, Chirag Rajan.;

  • 作者单位

    Purdue University.;

  • 授予单位 Purdue University.;
  • 学科 Engineering Mechanical.
  • 学位 M.S.M.E.
  • 年度 2011
  • 页码 112 p.
  • 总页数 112
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号