首页> 外文学位 >Theoretical studies in spiral edge-flame propagation and particle hydrodynamics.
【24h】

Theoretical studies in spiral edge-flame propagation and particle hydrodynamics.

机译:螺旋边缘火焰传播和颗粒流体动力学的理论研究。

获取原文
获取原文并翻译 | 示例

摘要

Applied mathematics techniques are used in this investigation to gain insight into three different physical processes of current interest in combustion and fluid dynamics.;The first problem addresses the propagation of spiral edge flames found in von Karman swirling flows induced in rotating porous-disk burners. In this configuration, a porous disk is spun at a constant angular velocity in an otherwise quiescent oxidizing atmosphere. Gaseous methane is injected through the disk pores and burns in a flat diffusion flame adjacent to the disk. Among other flame patterns experimentally found, a stable, rotating spiral flame is observed for sufficiently large rotation velocities and small fuel flow rates as a result of partial extinction of the underlying diffusion flame. The tip of the spiral can undergo a steady rotation for sufficiently large rotational velocities or small fuel flow rates, whereas a meandering tip in an epicycloidal trajectory is observed for smaller rotational velocities and larger fuel flow rates. A formulation of this problem is presented in the equidiffusional and thermodiffusive limits within the framework of one-step chemistry with large activation energies. Conditions for extinction of the underlying uniform diffusion flame are obtained by using activation energy asymptotics. Edge-flame propagation regimes are obtained by scaling analyses of the conservation equations and exemplified by numerical simulations of nearly straight two-dimensional edge flames near a cold porous wall in a von Karman boundary layer, for which lateral heat losses to the disk induce extinction of the trailing diffusion flame but are relatively unimportant in the front region, consistent with the existence of the cooling tail found in the experiments. The propagation dynamics of a steadily rotating spiral edge is studied in the large-core limit, for which the characteristic Markstein length is much smaller than the distance from the center at which the spiral tip is anchored. An asymptotic description of the edge tangential structure is obtained, spiral edge shapes are calculated, and an expression is found that relates the spiral rotational velocity with the rest of the parameters. A quasistatic stability analysis of the edge shows that the edge curvature at extinction in the tip region is responsible for the stable tip anchoring at the core radius. Finally, experimental results are analyzed, and theoretical predictions are tested.;The second problem analyzes, in the limit of small Reynolds and ionic Peclet numbers and small clearances, the canonical problem of the forces exerted on a small solid spherical particle undergoing slow translation and rotation in an incompressible fluid moving parallel to an elastic substrate, subject to electric double-layer and van der Waals intermolecular forces, as a representative example of particle gliding and of the idealized swimming dynamics of more complex bodies near soft and sticky surfaces in a physiological solvent. The competition of the hydrodynamic, intermolecular and surface-deformation effects, induces a lift force, and drag-force and drift-force perturbations, which do not scale linearly with the velocities, and produces a non-additivity of the intermolecular effects by reducing the intensity of the repulsive forces and by increasing the intensity of the attractive forces. Reversible and irreversible elastohydrodynamic adhesion regimes are found, and elastohydrodynamic corrections are derived for the critical coagulation concentration of electrolyte predicted by the the Derjaguin-Landau Verwey-Overbeek (DLVO) standard theory of colloid stabilization.;The third problem addresses the dynamics of pollen shedding from wind-pollinated plants, and establishes a fluid-dynamical framework for future refinements. A simple scaling analysis, supported by experimental measurements on typical wind-pollinated plant species, is used to estimate the suitability of previous resolutions of this process based on wind-gust aerodynamic models of fungal-spore liberation. According to this scaling analysis, unsteady boundary-layer forces produced by wind gusts are found to be mostly ineffective since the Stokes-Reynolds number is a small parameter for typical anemophilous species and wind streams. A hypothetical model of a stochastic aeroelastic mechanism, initiated by the atmospheric turbulence typical of the micrometeorological conditions in the vicinity of the plant, is proposed to contribute to wind pollination.
机译:在这项研究中使用了应用数学技术,以深入了解当前在燃烧和流体动力学方面感兴趣的三个不同物理过程。第一个问题解决了旋转多孔盘式燃烧器引起的冯·卡曼旋流中发现的螺旋边缘火焰的传播。在这种构造中,多孔盘在否则为静态的氧化气氛中以恒定角速度旋转。气态甲烷通过圆盘孔注入,并在靠近圆盘的平面扩散火焰中燃烧。在实验中发现的其他火焰模式中,由于下面的扩散火焰部分熄灭,因此观察到稳定的旋转螺旋火焰,具有足够大的旋转速度和较小的燃料流量。对于足够大的旋转速度或较小的燃料流率,螺旋形尖端可以进行稳定旋转,而对于较小的旋转速度和较大的燃料流率,可以观察到外摆线轨迹中的曲折尖端。在具有大活化能的一步化学过程中,在等扩散和热扩散极限范围内提出了该问题的公式。通过使用活化能渐近性来获得消灭下面的均匀扩散火焰的条件。边缘火焰的传播方式是通过对守恒方程的缩放分析获得的,并通过在冯·卡曼边界层中冷多孔壁附近的近乎笔直的二维边缘火焰的数值模拟来举例说明,为此,圆盘的侧向热损失会导致圆盘的灭绝。尾随扩散火焰,但在前部区域相对不重要,这与实验中发现的冷却尾部一致。在大铁心极限中研究了稳定旋转的螺旋边的传播动力学,为此,马克斯坦的特征长度远小于距螺旋尖端锚定中心的距离。获得了边缘切线结构的渐近描述,计算了螺旋边缘的形状,并找到了一个表达式,将螺旋转速与其余参数联系起来。边缘的准静态稳定性分析表明,尖端区域内的消光边缘曲率是导致尖端在核心半径处锚固的原因。最后,对实验结果进行了分析,并进行了理论预测。第二个问题是,在小的雷诺数和离子派克雷特数和小间隙的情况下,对小固体球形颗粒施加缓慢平移和力的力的典型问题进行了分析。平行于弹性基材运动的不可压缩流体的旋转,受到双电层和范德华力的分子间作用力,作为颗粒滑行和生理上柔软和粘性表面附近更复杂物体的理想游泳动力学的代表示例溶剂。流体动力,分子间和表面变形效应的竞争引起了升力,拖曳力和漂移力扰动,这些扰动不随速度线性变化,并且通过减小分子间作用来产生分子间效应的非可加性。排斥力的强度和通过增加吸引力的强度。发现了可逆和不可逆的弹性流体动力粘附机制,并根据Derjaguin-Landau Verwey-Overbeek(DLVO)胶体稳定化标准理论预测的电解质临界凝结浓度进行了弹性流体动力校正。从风媒植物中提取,并为未来的改进建立了流体动力学框架。在典型的风传粉植物物种的实验测量的基础上,进行了简单的比例分析,用于基于真菌-孢子释放的阵风空气动力学模型来估计该过程以前的分辨率的适用性。根据这种定标分析,由于斯托克斯-雷诺数是典型嗜性菌种和风向的一个小参数,因此阵风产生的不稳定边界层力被发现几乎无效。提出了一种由植物附近微气象条件典型的大气湍流引起的随机气动弹性机制的假想模型,它有助于风授粉。

著录项

  • 作者

    Urzay, Javier.;

  • 作者单位

    University of California, San Diego.;

  • 授予单位 University of California, San Diego.;
  • 学科 Engineering Aerospace.;Engineering Mechanical.
  • 学位 Ph.D.
  • 年度 2010
  • 页码 171 p.
  • 总页数 171
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号