首页> 外文学位 >Fast and slow active control of combustion instabilities in liquid-fueled combustors.
【24h】

Fast and slow active control of combustion instabilities in liquid-fueled combustors.

机译:主动和缓慢主动控制液体燃料燃烧器的燃烧不稳定性。

获取原文
获取原文并翻译 | 示例

摘要

This thesis describes an experimental investigation of two different novel active control approaches that are employed to suppress combustion instabilities in liquid-fueled combustors. A “fast” active controller requires continuous modulation of the fuel injection rate at the frequency of the instability with proper phase and gain. Use of developed optical tools reveals that the “fast” active control system suppresses the instability by changing the nearly flat distribution of the phase between pressure and heat release oscillations to a gradually varying phase distribution, thus dividing the combustion zone into regions that alternately damp and drive combustor oscillations. The effects of these driving/damping regions tend to counter one another, which result in significant damping of the unstable oscillations. In contrast, a “slow” active controller operates at a rate commensurate with that at which operating conditions change during combustor operation. Consequently, “slow” controllers need infrequent activation in response to changes in engine operating conditions to assure stable operation at all times. Using two types of fuel injectors that can produce large controllable variation of fuel spray properties, it is shown that by changing the spray characteristics it is possible to significantly damp combustion instabilities. Similar to the aforementioned result of the “fast” active control study, “slow” change of the fuel spray properties also modifies the nearly flat phase distribution during unstable operation to a gradually varying phase distribution, resulting in combustor “stabilization”. Furthermore, deconvolutions of CH*-chemiluminescence images reveal the presence of vortex-flame interaction during unstable operation. Strong driving of instabilities occurs where the mean axial velocity of the flow is approximately zero, a short distance downstream of the flame holder where a significant fraction of the fuel burns in phase with the pressure oscillations.; It is shown that the “fast” and “slow” active control approaches suppress combustion instabilities in a different manner. Nevertheless, the both control approaches successfully suppress combustion instabilities by modifying the temporal and spatial behavior of the combustion process heat release that is responsible for driving the instability.
机译:本文描述了两种不同的新型主动控制方法的实验研究,这些方法用于抑制液体燃料燃烧器的燃烧不稳定性。 “快速”有源控制器需要以不稳定的频率连续调制燃油喷射速率,并具有适当的相位和增益。使用发达的光学工具表明,“快速”主动控制系统通过将压力和放热振荡之间的相位几乎平坦的分布更改为逐渐变化的相位分布来抑制不稳定,从而将燃烧区划分为交替衰减和衰减的区域。驱动燃烧室振荡。这些驱动/阻尼区域的作用趋于彼此抵消,这导致不稳定振荡​​的显着衰减。相反,“慢速”有源控制器以与燃烧器操作期间操作条件改变的速率相对应的速率操作。因此,“慢速”控制器需要不频繁地启动以响应发动机工况变化,以确保始终稳定运行。结果表明,使用两种类型的喷油器可以产生较大的可控燃油喷雾特性变化,这表明通过改变喷雾特性可以显着降低燃烧不稳定性。类似于上述“快速”主动控制研究的结果,燃料喷雾特性的“缓慢”变化还将不稳定运行期间的近乎平坦的相位分布修改为逐渐变化的相位分布,从而导致燃烧器“稳定”。此外,CH *-化学发光图像的反卷积揭示了在不稳定操作期间存在涡旋-火焰相互作用。当流动的平均轴向速度大约为零时,即在火焰保持器下游的一小段距离处,其中很大一部分的燃料与压力振荡同相燃烧,从而发生强烈的不稳定性驱动。结果表明,“快速”和“慢速”主动控制方法以不同的方式抑制了燃烧不稳定性。然而,这两种控制方法都通过修改负责驱动不稳定性的燃烧过程放热的时间和空间行为,成功地抑制了燃烧不稳定性。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号