首页> 外文学位 >Critical engineering and chemical problems in freeze drying process design.
【24h】

Critical engineering and chemical problems in freeze drying process design.

机译:冷冻干燥工艺设计中的关键工程和化学问题。

获取原文
获取原文并翻译 | 示例

摘要

Choice of the target product temperature (Ttarget) and determination of the shelf temperature necessary to achieve the Ttarget in primary drying are the two critical factors for freeze drying process optimization. The target product temperature chosen in primary drying is dependent upon the “chemical” aspects of the formulation, which includes the Tg and Teu of the formulation and the stability of the labile drug, i.e., protein denaturation or unfolding.; Protein unfolding during cold denaturation in high viscosity systems, in which sucrose was used to enhance the system viscosity, was used as a model in a study of the protein unfolding kinetics. It was found that the stabilization effect of sugars and/or polyols on protein cold denaturation is much larger than on thermal denaturation, which can be counteracted by using of denaturants, thus allowing us to maintain a relatively constant protein cold denaturation temperature during our kinetic studies. The unfolding kinetics were investigated at various viscosities by both tryptophan fluorescence emission spectroscopy and high sensitivity modulated DSC methods. It was demonstrated that protein unfolding kinetics is highly coupled with system viscosity in high viscosity systems. The data suggest that it is not necessary to freeze dry protein formulations at temperature below Tg to avoid protein unfolding.; Manometric temperature measurement (MTM) was evaluated as a method to achieve the optimum shelf temperature to achieve the Ttarget, to determine drying end points and to evaluate residual moisture in real-time. It was found that the product temperature (Tp) measured by MTM needs sufficient ice sublimation area and the MTM yields a temperature close to the lowest product temperature in a product temperature heterogeneous system. The accuracy of MTM product dry layer resistance is improved if the temperature gradient across the ice from bottom to the sublimation interface (ΔT) is evaluated from the pressure rise data and the thermal shields are used during freeze drying. The extent of primary drying can be monitored by calculation of the amount of ice remaining using MTM data. However, MTM yields product temperatures which are too low at the later stage of primary drying when high concentrations of amorphous materials are freeze dried, a result of water vapor resorption by amorphous dry product during MTM valve closure.; It was demonstrated that Manometric Temperature Measurement (MTM) and an “Expert System” for good practices in freeze drying allow development of an optimized freeze drying process during a single laboratory freeze drying experiment, a procedure we denote the “smart freeze dryer” procedure.
机译:选择目标产品温度(T target )和确定初次干燥中达到T target 所需的货架温度是冷冻干燥工艺优化的两个关键因素。在初步干燥中选择的目标产品温度取决于配方的“化学”方面,包括T g '和T eu 不稳定药物的制剂和稳定性,即蛋白质变性或展开。在高粘度体系中冷变性过程中的蛋白质解折叠(其中使用蔗糖提高了系统粘度)被用作研究蛋白质解折叠动力学的模型。发现糖和/或多元醇对蛋白质冷变性的稳定作用远大于对热变性的稳定作用,这可以通过使用变性剂来抵消,因此可以使我们在动力学研究过程中保持相对恒定的蛋白质冷变性温度。 。通过色氨酸荧光发射光谱和高灵敏度调制DSC方法研究了在各种粘度下的展开动力学。结果表明,在高粘度体系中,蛋白质的解构动力学与体系粘度高度相关。数据表明,不必在T g '以下的温度下冷冻干燥蛋白质制剂,以避免蛋白质解折叠。评估了测压温度测量(MTM),该方法可达到达到最佳货架温度以达到T target ,确定干燥终点并实时评估残留水分的方法。发现通过MTM测量的产品温度(T p )需要足够的冰升华面积,并且MTM产生的温度接近产品温度异质系统中的最低产品温度。如果根据压力上升数据评估从底部到升华界面的冰上温度梯度(ΔT),并在冷冻干燥过程中使用隔热罩,则MTM产品干层阻力的精度将得到提高。可以通过使用MTM数据计算剩余的冰量来监控一次干燥的程度。然而,当高浓度的无定形材料被冷冻干燥时,MTM产生的产品温度在初级干燥的后期太低,这是由于MTM阀关闭期间无定形干燥产品吸收了水蒸气的结果。结果表明,测压温度测量(MTM)和冷冻干燥良好实践的“专家系统”可以在单个实验室冷冻干燥实验中开发出优化的冷冻干燥过程,该过程称为“智能冷冻干燥器”过程。

著录项

  • 作者

    Tang, Xiaolin (Charlie).;

  • 作者单位

    The University of Connecticut.;

  • 授予单位 The University of Connecticut.;
  • 学科 Chemistry Pharmaceutical.
  • 学位 Ph.D.
  • 年度 2003
  • 页码 275 p.
  • 总页数 275
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类 药物化学;
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号