首页> 外文学位 >A CFD analysis of turbine blade cooling using isotropic and anisotropic turbulence models.
【24h】

A CFD analysis of turbine blade cooling using isotropic and anisotropic turbulence models.

机译:使用各向同性和各向异性湍流模型对涡轮叶片冷却进行CFD分析。

获取原文
获取原文并翻译 | 示例

摘要

Advanced gas turbines operate at very high temperatures. Optimal cooling is necessary to ensure that the material properties of the turbine blade do not deteriorate under these harsh conditions. A methodology is developed for improved prediction of flow and heat transfer in turbine blade passages. A Reynolds-averaged thin-layer Navier-Stokes flow solver for structured grids entitled CFL3D is used. The code is modified to allow solution in a rotating frame of reference. This modification aids in circumventing the need to use computationally intensive time-accurate numerical methods. A good resolution of the region near the wall is paramount because this is the region which dictates the actual heat transfer between the fluid and the solid in contact. Menter's k-ω model and the Explicit Algebraic Stress Model (EASM) within the k-ω formulation are applied. Menter's k-ω model accounts for the near wall effects without any ad-hoc treatment and is not unrealistically too sensitive to the free-stream conditions. EASM accounts for the complex strain field and is superior when turbulent anisotropy is dominant. Special attention is given to turbulence anisotropy, buoyancy, and Coriolis effects on heat transfer. In stiff problems, fuzzy logic is used to automate the choice of CFL number. The proposed approach is tested for a stationary duct, a rotating duct and a U-bend case. For the first set of test data from Pratt & Whitney, the predicted solutions are compared to the experimental data for one stationary and three rotating cases. For the second set of test data from General Electric Company, the numerical solutions are compared to the experimental data for three rotating cases. For this set of data, the operating conditions are analogous to true gas turbine operating conditions. For the third set of data, which is the U-bend case from the Von Karman Institute for Fluid Dynamics, comparisons are made to the experimental data for two different conditions. For one case, comparison is also made to a previously published numerical solution. CFL3D predicted heat transfer qualitatively and quantitatively reasonably well. Fuzzy Logic proved to be a fairly useful tool in a few cases, at least in the initial part of the solution process. CFL3D code encountered difficulties in convergence when the speeds of rotations for the straight duct cases were increased. The convergence behavior was less than desirable for the U-bend cases wherein the physics was very complex. Even the use of fuzzy routine did not alleviate the convergence problems in such more involved cases.
机译:先进的燃气轮机在非常高的温度下运行。必须进行最佳冷却,以确保涡轮叶片的材料性能在这​​些恶劣条件下不会劣化。开发了用于改进对涡轮叶片通道中的流动和传热的预测的方法。使用了名为CFL3D的用于结构化网格的Reynolds平均薄层Navier-Stokes流量求解器。修改代码以允许在旋转参考框架中求解。此修改有助于避免使用大量计算时间精确的数值方法的需求。壁附近区域的良好分辨率至关重要,因为这是决定流体与所接触固体之间实际传热的区域。应用k-ω公式内的Menterk-ω模型和显式代数应力模型(EASM)。 Menter的k-ω模型无需任何临时处理即可解决近壁效应,并且对自由流条件也不是太过现实。 EASM解释了复杂的应变场,当湍流各向异性是主要因素时,EASM更为优越。特别注意湍流各向异性,浮力和科里奥利效应对热传递的影响。在僵化问题中,模糊逻辑用于自动选择CFL编号。对固定管道,旋转管道和U形弯管箱测试了所提出的方法。对于来自Pratt&Whitney的第一组测试数据,将预测的解与一个固定和三个旋转案例的实验数据进行比较。对于来自通用电气公司的第二组测试数据,将数值解与三个旋转案例的实验数据进行了比较。对于这组数据,运行条件​​类似于真实的燃气轮机运行条件。对于第三组数据,这是冯·卡曼流体动力学研究所的U形弯曲案例,对两种不同条件下的实验数据进行了比较。在一种情况下,还与先前发布的数值解进行了比较。 CFL3D可以很好地定性和定量地预测传热。事实证明,在某些情况下,至少在解决过程的最初阶段,模糊逻辑是一种相当有用的工具。当增加直管情况下的旋转速度时,CFL3D代码在收敛时遇到困难。对于物理非常复杂的U形弯曲情况,其收敛行为不理想。在这种涉及更多的情况下,即使使用模糊例程也不能缓解收敛问题。

著录项

  • 作者

    Abraham, Thomas P.;

  • 作者单位

    Rensselaer Polytechnic Institute.;

  • 授予单位 Rensselaer Polytechnic Institute.;
  • 学科 Engineering Mechanical.
  • 学位 Ph.D.
  • 年度 2003
  • 页码 159 p.
  • 总页数 159
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类 机械、仪表工业;
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号