首页> 外文学位 >Test platform design and control of a bicycle-type two-wheeled autonomous vehicle.
【24h】

Test platform design and control of a bicycle-type two-wheeled autonomous vehicle.

机译:自行车型两轮自动驾驶汽车的测试平台设计和控制。

获取原文
获取原文并翻译 | 示例

摘要

Bicycle dynamics and behaviors have been vastly studied through modeling and simulation. Due to the complexity, software models are often assumed subjecting to different nonholonomic constraints in order to simplify the models and control algorithms. A real life autonomous bicycle faces perturbances from the road, wind, tire deformation, slipping among other external forces. Limitations of simulations will not always allow these to apply. All these issues make the autonomous bicycle research very challenging.;Field test results show that the research has successfully achieved the goal of testing the low level control of autonomous bicycle. The developed algorithms are able to balance the platform on semi-smooth surfaces.;To study the bicycle control problems a few research results from the literature are reviewed. A nonlinear bicycle model was used to conduct control simulations. Model based nonlinear controllers were applied to simulate the balance and path tracking control. A PID controller is more practical to replace the non-linear controller for the balance control. Simulation results of the different controllers are compared in order to decide the proper control strategies on the hardware platform. The controller design of the platform complies with practicality based on the hardware configuration. Two control schemes are implemented on the test platform; both are developed with PID algorithms. The first scheme is a single PID control loop in which the controller takes the roll angle feedback and balances the running platform by means of steering. If the desired roll angle is zero the controller will try to hold the platform at the upright position. If the desired roll angle is non-zero the platform will be balanced at an equilibrium roll angle. A fixed roll angle will lead to a fixed steering angle as the result of balance control. The second scheme is directional control with balance consisting of two cascaded PID loops. Steering is the only means to control balance and direction. To do so the desired roll angle must be controlled to achieve the desired steering angle. The platform tilts to the desired side and steering follows to the same side of the ti the platform can then be lifted up by the centrifugal force and eventually balanced at an equilibrium roll angle. The direction can be controlled using a controlled roll angle. Many implementation issues have to be dealt with in order for the control algorithm to be functional. Dynamic roll angle measurement is implemented with complementary internal sensors (accelerometer and gyroscope). Directional information is obtained through a yaw rate gyroscope which operates on the principle of resonance. To monitor the speed of the platform, a rotational sensor was formed by using a hard drive stepper motor attached to the axis of the vehicle's driving motor. The optoelectronic circuit plays the vital role to ensure the system functionality by isolating the electromagnetic noise from the motors. Finally, in order to collect runtime data, the wireless communication is implemented through Bluetooth/RS232 serial interface. The data is then plotted and analyzed with Matlab. Controller gains are tuned through numerous road tests.
机译:自行车动力学和行为已通过建模和仿真得到了广泛的研究。由于复杂性,通常假定软件模型受到不同的非完整约束,以简化模型和控制算法。现实生活中的自主自行车面临着道路,风,轮胎变形,打滑以及其他外力的干扰。模拟的局限性并不总是允许这些应用。所有这些问题使自动自行车的研究非常具有挑战性。现场测试结果表明,该研究已经成功地达到了测试自动自行车低水平控制的目的。所开发的算法能够使平台在半光滑表面上保持平衡。为了研究自行车控制问题,对文献中的一些研究结果进行了综述。使用非线性自行车模型进行控制仿真。应用基于模型的非线性控制器来模拟平衡和路径跟踪控制。 PID控制器更实用,可以代替非线性控制器进行平衡控制。比较不同控制器的仿真结果,以便确定硬件平台上的适当控制策略。该平台的控制器设计基于硬件配置符合实用性。测试平台上实现了两种控制方案。两者均采用PID算法开发。第一种方案是单个PID控制回路,其中控制器获取侧倾角反馈并通过转向来平衡运行平台。如果所需的侧倾角为零,则控制器将尝试将平台保持在直立位置。如果期望的侧倾角不为零,则平台将以平衡侧倾角进行平衡。平衡控制的结果是,固定的侧倾角将导致固定的转向角。第二种方案是带有两个级联PID回路的平衡方向控制。转向是控制平衡和方向的唯一方法。为此,必须控制所需的侧倾角以获得所需的转向角。平台倾斜到所需的一侧,转向跟随倾斜的同一侧;然后可以通过离心力将平台抬起,并最终以平衡的侧倾角进行平衡。方向可以使用控制的侧倾角进行控制。为了使控制算法起作用,必须解决许多实现问题。动态侧倾角测量通过互补的内部传感器(加速度计和陀螺仪)实现。方向信息是通过以共振原理运行的偏航率陀螺仪获得的。为了监视平台的速度,通过使用安装在车辆驱动电机轴上的硬盘步进电机来形成旋转传感器。光电电路通过隔离电动机的电磁噪声,对确保系统功能起着至关重要的作用。最后,为了收集运行时数据,通过Bluetooth / RS232串行接口实现无线通信。然后绘制数据并使用Matlab进行分析。控制器的增益可通过大量的路测进行调整。

著录项

  • 作者

    Wang, Xinqi.;

  • 作者单位

    University of Ontario Institute of Technology (Canada).;

  • 授予单位 University of Ontario Institute of Technology (Canada).;
  • 学科 Engineering Automotive.;Engineering Mechanical.
  • 学位 M.A.Sc.
  • 年度 2011
  • 页码 118 p.
  • 总页数 118
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号