首页> 外文学位 >Fabrication and magnetotransport properties of graphene nanostructures.
【24h】

Fabrication and magnetotransport properties of graphene nanostructures.

机译:石墨烯纳米结构的制备和磁传输性能。

获取原文
获取原文并翻译 | 示例

摘要

Graphene have attracted considerable interest for fundamental studies and potential applications because of their unique electronic properties. However, its application in logic circuits is limited due to the lack of bandgap. It has been demonstrated that a conduction band gap can be achieved in graphene nanostructures, such as nanoribbons (GNRs), due to size confinement and edge effect, making it a very interesting electronic materials for circuits application. Theoretical studies have also suggested interesting magneto-electronic properties in GNRs originated from the magnetic edge states or the Hall-edge states under a perpendicular magnetic field, with very large magnetoresistance (MR) predicted. On the other hand, a GNRs device with width down to sub-10 nm is required to show large enough bandgap or spin coupling in order to operate under ambient condition, which remain significant challenging to state of art fabrication techniques.;In this dissertation, I will present my research studies on rational fabrication of GNRs with sub-10 nm width by employing nanowire as etch mask. Taking a step further, I will demonstrate a new graphene nanostructure-graphene nanomesh as a mimic of GNR network. This nanomesh structure introduces finite size effect into a large sheet of graphene while retaining the two-dimensional nature, and therefore may be advantageous in practical device fabrication and integration. Based on the advance of our fabrication method, I will show the first experimental observation of a dramatic enhancement of the conductance in a GNR field-effect transistor by a perpendicular magnetic field. Very large negative MR of nearly 100% with conductance enhanced over 10,000 times was observed at low temperatures; and more than 50% remained at room temperature. Similar magnetotransport behavior was also observed in graphene nanomesh device. The observed large MR was attributed to the complex interplay between edge roughness, quantum confinement and the formation of cyclotron orbits. These findings demonstrate interesting magnetotransport properties in graphene nanostructures, and can open up exciting new opportunities for a new generation of magneto-electronic devices.
机译:石墨烯因其独特的电子特性而引起了基础研究和潜在应用的极大兴趣。然而,由于缺乏带隙,其在逻辑电路中的应用受到限制。已经证明由于尺寸限制和边缘效应,可以在石墨烯纳米结构中实现导带隙,例如纳米带(GNR),这使其成为用于电路应用的非常有趣的电子材料。理论研究还表明,GNR中有趣的磁电子性质源自垂直磁场下的磁边缘状态或霍尔边缘状态,并预测到很大的磁阻(MR)。另一方面,为了在环境条件下工作,需要宽度低至10nm以下的GNRs器件显示足够大的带隙或自旋耦合,这对现有的制造技术仍然是很大的挑战。我将通过纳米线作为蚀刻掩模,介绍有关合理制造低于10 nm宽度的GNR的研究成果。更进一步,我将演示一种新的石墨烯纳米结构-石墨烯纳米网,作为GNR网络的模仿物。这种纳米网状结构在保持二维性质的同时将有限尺寸效应引入到大片石墨烯中,因此在实际的器件制造和集成中可能是有利的。基于我们制造方法的进步,我将展示第一个实验观察到的垂直磁场在GNR场效应晶体管中电导的显着增强。在低温下观察到非常大的负MR,将近100%,电导提高了10,000倍;室温下保持50%以上。在石墨烯纳米网器件中也观察到了类似的磁传输行为。观察到的大MR归因于边缘粗糙度,量子限制和回旋加速器轨道形成之间的复杂相互作用。这些发现证明了石墨烯纳米结构中有趣的磁传输特性,并且可以为新一代磁电子器件开辟令人兴奋的新机遇。

著录项

  • 作者

    Bai, Jingwei.;

  • 作者单位

    University of California, Los Angeles.;

  • 授予单位 University of California, Los Angeles.;
  • 学科 Engineering Electronics and Electrical.;Engineering Materials Science.;Nanotechnology.;Physics Condensed Matter.
  • 学位 Ph.D.
  • 年度 2011
  • 页码 112 p.
  • 总页数 112
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号