首页> 外文学位 >High-speed extended-term time-domain simulation for online cascading analysis of power system.
【24h】

High-speed extended-term time-domain simulation for online cascading analysis of power system.

机译:电力系统在线级联分析的高速扩展时域仿真。

获取原文
获取原文并翻译 | 示例

摘要

A high-speed extended-term (HSET) time domain simulator (TDS), intended to become a part of an energy management system (EMS), has been newly developed for use in online extended-term dynamic cascading analysis of power systems. HSET-TDS includes the following attributes for providing situational awareness of high-consequence events: (i) online analysis, including n-1 and n-k events, (ii) ability to simulate both fast and slow dynamics for 1--3 hours in advance, (iii) inclusion of rigorous protection-system modeling, (iv) intelligence for corrective action ID, storage, and fast retrieval, and (v) high-speed execution.;Very fast on-line computational capability is the most desired attribute of this simulator. Based on the process of solving algebraic differential equations describing the dynamics of power system, HSET-TDS seeks to develop computational efficiency at each of the following hierarchical levels, (i) hardware, (ii) strategies, (iii) integration methods, (iv) nonlinear solvers, and (v) linear solver libraries.;This thesis first describes the Hammer-Hollingsworth 4 (HH4) implicit integration method. Like the trapezoidal rule, HH4 is symmetrically A-Stable but it possesses greater high-order precision (h4 ) than the trapezoidal rule. Such precision enables larger integration steps and therefore improves simulation efficiency for variable step size implementations. This thesis provides the underlying theory on which we advocate use of HH4 over other numerical integration methods for power system time-domain simulation.;Second, motivated by the need to perform high speed extended-term time domain simulation (HSET-TDS) for on-line purposes, this thesis presents principles for designing numerical solvers of differential algebraic systems associated with power system time-domain simulation, including DAE construction strategies (Direct Solution Method), integration methods(HH4), nonlinear solvers(Very Dishonest Newton), and linear solvers(SuperLU). We have implemented a design appropriate for HSET-TDS, and we compare it to various solvers, including the commercial grade PSSE program, with respect to computational efficiency and accuracy, using as examples the New England 39 bus system, the expanded 8775 bus system, and PJM 13029 buses system.;Third, we have explored a stiffness-decoupling method, intended to be part of parallel design of time domain simulation software for super computers. The stiffness-decoupling method is able to combine the advantages of implicit methods (A-stability) and explicit method(less computation). With the new stiffness detection method proposed herein, the stiffness can be captured. The expanded 975 buses system is used to test simulation efficiency.;Finally, several parallel strategies for super computer deployment to simulate power system dynamics are proposed and compared. Design A partitions the task via scale with the stiffness decoupling method, waveform relaxation, and parallel linear solver. Design B partitions the task via the time axis using a highly precise integration method, the Kuntzmann-Butcher Method - order 8 (KB8). The strategy of partitioning events is designed to partition the whole simulation via the time axis through a simulated sequence of cascading events. For all strategies proposed, a strategy of partitioning cascading events is recommended, since the sub-tasks for each processor are totally independent, and therefore minimum communication time is needed.
机译:旨在成为能源管理系统(EMS)一部分的高速长期(HSET)时域仿真器(TDS),是新开发的,用于电力系统的在线长期动态级联分析。 HSET-TDS包括以下属性,用于提供对高后果事件的态势感知:(i)在线分析,包括n-1和nk事件;(ii)能够在1--3小时内模拟快速和慢速动态的能力;(iii)包括严格的保护系统建模;(iv)纠正措施ID,存储和快速检索的智能;以及(v)高速执行。;非常快速的在线计算能力是该系统最需要的属性这个模拟器。基于求解描述电力系统动力学的代数微分方程的过程,HSET-TDS寻求在以下每个层次上提高计算效率,(i)硬件,(ii)策略,(iii)集成方法,(iv )非线性求解器和(v)线性求解器库。本文首先介绍了Hammer-Hollingsworth 4(HH4)隐式积分方法。像梯形规则一样,HH4对称地为A稳定的,但它比梯形规则具有更高的高阶精度(h4)。这样的精度可以实现更大的集成步骤,因此可以提高可变步长实现的仿真效率。本论文提供了基础理论,在该理论基础上,我们提倡在电力系统时域仿真中使用HH4而不是其他数值积分方法。第二,出于对高速网络进行高速扩展时域仿真(HSET-TDS)的需要在线目的,本文提出了设计与电力系统时域仿真相关的微分代数系统数值求解器的原理,包括DAE构造策略(直接求解方法),积分方法(HH4),非线性求解器(非常不诚实的牛顿)和线性求解器(SuperLU)。我们已经实施了适用于HSET-TDS的设计,并将其与各种求解器(包括商业级PSSE程序)在计算效率和准确性方面进行了比较,以新英格兰39总线系统,扩展的8775总线系统,第三,我们探索了一种刚度去耦方法,旨在成为超级计算机时域仿真软件并行设计的一部分。刚度解耦方法能够结合隐式方法(A稳定性)和显式方法(较少计算)的优点。利用本文提出的新的刚度检测方法,可以捕获刚度。扩展后的975总线系统用于测试仿真效率。最后,提出并比较了几种用于超级计算机部署以仿真电力系统动态的并行策略。设计A通过缩放比例使用刚度去耦方法,波形松弛和平行线性求解器对任务进行划分。设计B使用高精度积分方法Kuntzmann-Butcher方法-8阶(KB8)在时间轴上划分任务。划分事件的策略旨在通过级联事件的模拟序列通过时间轴对整个模拟进行划分。对于所有提出的策略,由于每个处理器的子任务是完全独立的,因此建议对级联事件进行分区的策略,因此需要最少的通信时间。

著录项

  • 作者

    Fu, Chuan.;

  • 作者单位

    Iowa State University.;

  • 授予单位 Iowa State University.;
  • 学科 Engineering Electronics and Electrical.;Energy.
  • 学位 Ph.D.
  • 年度 2011
  • 页码 157 p.
  • 总页数 157
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号