首页> 外文学位 >Wavefield Analysis of Rayleigh Waves for Near-Surface Shear-Wave Velocity.
【24h】

Wavefield Analysis of Rayleigh Waves for Near-Surface Shear-Wave Velocity.

机译:近表面剪切波速度的瑞利波的波场分析。

获取原文
获取原文并翻译 | 示例

摘要

Shear (S)-wave velocity is a key property of near-surface materials and is the fundamental parameter for many environmental and engineering geophysical studies. Directly acquiring accurate S-wave velocities from a seismic shot gather is usually difficult due to the poor signal-to-noise ratio. The relationship between Rayleigh-wave phase velocity and frequency has been widely utilized to estimate the S-wave velocities in shallow layers using the multichannel analysis of surface waves (MASW) technique. Hence, Rayleigh wave is a main focus of most near-surface seismic studies. Conventional dispersion analysis of Rayleigh waves assumes that the earth is laterally homogeneous and the free surface is horizontally flat, which limits the application of surface-wave methods to only 1D earth models or very smooth 2D models. In this study I extend the analysis of Rayleigh waves to a 2D domain by employing the 2D full elastic wave equation so as to address the lateral heterogeneity problem. I first discuss the accurate simulation of Rayleigh waves through finite-difference method and the boundary absorbing problems in the numerical modeling with a high Poisson's ratio (> 0.4), which is a unique near-surface problem. Then I develop an improved vacuum formulation to generate accurate synthetic seismograms focusing on Rayleigh waves in presence of surface topography and internal discontinuities. With these solutions to forward modeling of Rayleigh waves, I evaluate the influence of surface topography to conventional dispersion analysis in 2D and 3D domains by numerical investigations. At last I examine the feasibility of inverting waveforms of Rayleigh waves for shallow S-wave velocities using a genetic algorithm. Results of the study show that Rayleigh waves can be accurately simulated in near surface using the improved vacuum formulation. Spurious reflections during the numerical modeling can be efficiently suppressed by the simplified multiaxial perfectly matched layers. The conventional MASW method can tolerate gentle topography changes with insignificant errors. Finally, many near-surface features with strong lateral heterogeneity such as dipping interfaces, faults, and tunnels can be imaged by the waveform inversion of Rayleigh waves for shallow S-wave velocities.;This thesis consists of four papers that are either published (chapter 1) or in review (chapter 2, 3, and 4) for consideration of publication to peer-refereed journals. Each chapter represents a paper, and therefore inadvertently there will be a certain degree of overlap between chapters (particularly for the introduction parts, where references to many common papers occur).
机译:横波速度是近地表材料的关键特性,并且是许多环境和工程地球物理研究的基本参数。由于较差的信噪比,通常很难从地震炮弹中直接获取准确的S波速度。瑞利波相速度和频率之间的关系已被广泛利用,以利用表面波多通道分析(MASW)技术估算浅层中的S波速度。因此,瑞利波是大多数近地表地震研究的主要焦点。常规的瑞利波频散分析假设地球是横向均匀的,自由表面是水平平坦的,这将表面波方法的应用仅限于一维地球模型或非常光滑的二维模型。在这项研究中,我通过使用二维全弹性波方程将瑞利波的分析扩展到二维域,以解决横向异质性问题。首先,我讨论了有限差分法对瑞利波的精确模拟以及高泊松比(> 0.4)的数值建模中的边界吸收问题,这是一个独特的近表面问题。然后,我开发了一种改进的真空公式,以在表面形貌和内部不连续性存在的情况下,针对瑞利波生成准确的合成地震图。利用这些对瑞利波进行正向建模的解决方案,我通过数值研究评估了表面形貌对2D和3D域中常规色散分析的影响。最后,我研究了使用遗传算法将瑞利波波形转换为浅S波速度的可行性。研究结果表明,使用改进的真空公式,可以在近表面上精确模拟瑞利波。通过简化的多轴完美匹配层可以有效地抑制数值建模过程中的杂散反射。常规的MASW方法可以容忍平缓的地形变化,且误差不大。最后,对于浅S波速度,通过瑞利波的波形反演,可以对许多具有强烈的横向非均质性的近地表特征成像,如瑞利波的波形反演。(本论文由四篇发表的论文组成) 1)或进行审核(第2、3和4章),以考虑发布到同行推荐的期刊。每章代表一篇论文,因此,各章之间会无意之间存在一定程度的重叠(特别是对于引言部分,其中引用了许多常见的论文)。

著录项

  • 作者

    Zeng, Chong.;

  • 作者单位

    University of Kansas.;

  • 授予单位 University of Kansas.;
  • 学科 Geology.;Geophysics.
  • 学位 Ph.D.
  • 年度 2011
  • 页码 140 p.
  • 总页数 140
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号