首页> 外文学位 >Vehicle routing and resource allocation for health care under uncertainty.
【24h】

Vehicle routing and resource allocation for health care under uncertainty.

机译:不确定情况下用于卫生保健的车辆路线和资源分配。

获取原文
获取原文并翻译 | 示例

摘要

In this research, we study optimization models for health care under uncertainty and resource constraints. In particular, we study two problems: Vehicle Routing Problem (VRP) in health care, and resource allocation to address an infectious disease outbreak. The first problem is inspired by the routing of vehicles to deliver medical samples and documents on a multi-shift basis in a health care organization. It is all too common to have a limited amount of resources (e.g., the number of vehicles) to conduct these activities. The second problem deals with resource allocation in large-scale emergency response to an infectious disease outbreak. In addition to a limited amount of resources, large-scale emergencies are faced with substantial uncertainties. Also, accurate parameter estimation can be extremely difficult for epidemic models.;In health care routing it is necessary to use multiple shifts to be able to meet around-the-clock demand. Therefore we study the multi-shift VRP (MSVRP). In this problem, a limited fleet of vehicles is used repeatedly to serve demand over a planning horizon of several days. We formulate the MSVRP as a Mixed Integer Programming (MIP) model, and develop a shift-dependent (SD) heuristic that takes overtime into account when constructing routes. We show that the SD algorithm has significant savings in total cost over constructing the routes independently in each shift, and it can obtain optimal or close to optimal solutions for small instances. Specialized cuts are introduced to obtain efficient lower bounds. The solution of the SD algorithm on the test problems is within 1.09--1.82 times the optimal solution depending on the time window width, with the smaller time windows providing the tighter bounds.;A large-scale infectious disease outbreak can potentially reach large portions of the population. Planning an effective response to such an emergency requires a coordinated effort in multiple locations to best allocate limited resources to the infected areas. We present a multi-city resource allocation model to distribute the medical supplies in order to minimize the total number of deaths. The model helps decide the amounts of supplies to deliver and which infection control measure (isolation, ring vaccination, or mass vaccination) to use in each location, taking into account both the number of deaths from the disease and the deaths due to the intervention. In addition, we consider the problem with uncertainty in the initial number of cases and the transmission rates, and build a two-stage stochastic programming model with integer variables in both stages. To solve instances of realistic size we use a heuristic based on Benders decomposition, where we obtain dual information from the subproblems by solving a linear program around the second stage optimal solution. Finally, we use sample average approximation (SAA) to get confidence intervals on the optimal solution. We illustrate the use of the model and the solution technique in planning an emergency response to a hypothetic national smallpox outbreak. Computations show the scalability of the algorithm, the sensitivity of the algorithm to different resource levels, and the effectiveness of the cuts proposed to speed up the algorithm. The value of stochastic solution and confidence intervals of the optimality gap are computed.
机译:在这项研究中,我们研究不确定性和资源约束下的医疗保健优化模型。特别是,我们研究了两个问题:卫生保健中的车辆路径问题(VRP),以及用于解决传染病暴发的资源分配。第一个问题是由医疗机构在多班次运送车辆样品和医疗文件的路线上引起的。进行这些活动的资源有限(例如车辆数量)非常普遍。第二个问题涉及对传染病暴发的大规模应急响应中的资源分配。除了有限的资源外,大规模的紧急情况还面临着巨大的不确定性。同样,对于流行病模型,准确的参数估计可能非常困难。在医疗保健路由中,必须使用多个班次才能满足全天候的需求。因此,我们研究了多班次VRP(MSVRP)。在这个问题中,有限的车辆队在几天的计划期内被反复使用以满足需求。我们将MSVRP公式化为混合整数编程(MIP)模型,并开发了依赖于班次(SD)的启发式方法,在构造路线时要考虑加班时间。我们表明,SD算法在每个班次中都比单独构造路线有更多的总成本节省,并且对于小型实例,它可以获得最佳或接近最佳的解决方案。引入专门的剪切以获得有效的下界。 SD算法针对测试问题的解决方案取决于时间窗宽度,在最佳解决方案的1.09--1.82倍之内,较小的时间窗提供了更紧密的界限;大规模的传染病爆发可能会传播到很大的一部分人口。计划对此类紧急情况的有效响应需要在多个位置进行协调一致的努力,以将有限的资源最佳地分配给感染区域。我们提出了一种多城市资源分配模型来分配医疗用品,以最大程度地减少死亡人数。该模型考虑到因疾病死亡的人数和因干预而死亡的人数,有助于确定每个地点要提供的供应量以及要使用的感染控制措施(隔离,环形疫苗接种或大规模疫苗接种)。此外,我们考虑了初始病例数和传输率不确定的问题,并建立了一个两阶段随机变量的两阶段随机规划模型。为了解决实际大小的实例,我们使用基于Benders分解的启发式方法,在该方法中,通过围绕第二阶段最优解求解线性程序,从子问题中获得双重信息。最后,我们使用样本平均逼近(SAA)来获得最佳解决方案的置信区间。我们说明了该模型和解决方案技术在计划对假设的全国天花爆发的应急响应中的使用。计算结果显示了该算法的可伸缩性,该算法对不同资源级别的敏感性以及为加速该算法而提出的削减效果。计算随机解的值和最优间隙的置信区间。

著录项

  • 作者

    Ren, Yingtao.;

  • 作者单位

    University of Southern California.;

  • 授予单位 University of Southern California.;
  • 学科 Transportation.;Operations Research.;Computer Science.;Health Sciences Health Care Management.
  • 学位 Ph.D.
  • 年度 2011
  • 页码 158 p.
  • 总页数 158
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号