首页> 外文学位 >Secret key generation from excited source and its application to reciprocal wireless channel.
【24h】

Secret key generation from excited source and its application to reciprocal wireless channel.

机译:从激发源生成密钥并将其应用于相互的无线信道。

获取原文
获取原文并翻译 | 示例

摘要

The challenges of cryptographic key distribution over a wireless network are two-fold. First, the open wireless medium makes eavesdropping easy. Second, the dynamic topology of wireless network makes cryptographic key distribution difficult. In this thesis, we adopt a physical layer approach and consider a system model that the legitimate users' channels have correlated states. We explore the secret key generation from the inherent randomness of such a channel. In some cases, the correlated states cannot be observed unless a sender excites them.;We first look the secret key generation via channel excitation where the excitation source is a deterministic pre-defined system parameter. We show that the secret key capacity is a state-dependent generalization of that in Ahlswede and Csiszar's source-type model with wiretapper. The secret key capacity of excited source is achieved by an input distribution which corresponds to one with optimal combination of states. The results are applied to a reciprocal Rayleigh channel. We show that the optimal sounding signal is peaky at low SNRs. When the signal bandwidth is large and the physical channel is sparse, we show that there is one optimal operating bandwidth that achieves the highest ergodic secret key rate. We also characterize the (secrecy) outage performance under a non-ergodic regime. We later generalize the system to the case using random excitation source in which the sender can choose an excitation sequence according to her private source of randomness. Our coding strategy to achieve capacity involves the key generation scheme and the wiretap channel coding. We show that the secret key capacity is composed of both source-type and channel-type randomness. We also characterize an exponential bound of that probability that key agreement failures and an exponential bound of information leakage to an eavesdropper. These exponents allow us to determine the set of "strongly-achievable" secret key rates. We observe there is a fundamental tradeoff between reliability and secrecy in the system.
机译:在无线网络上分发密码密钥的挑战有两个方面。首先,开放的无线媒体使窃听变得容易。其次,无线网络的动态拓扑使加密密钥分发变得困难。在本文中,我们采用物理层方法,并考虑了合法用户的渠道具有关联状态的系统模型。我们从这种通道的固有随机性中探索秘密密钥的产生。在某些情况下,除非发送者将其激活,否则无法观察到相关状态。我们首先查看通过通道激励生成的秘密密钥,其中激励源是确定性的预定义系统参数。我们表明,秘密容量是Ahlswede和Csiszar带有窃听器的源类型模型中的状态依赖概括。激发源的密钥容量是通过一种输入分布实现的,该输入分布对应于具有最佳状态组合的输入分布。将结果应用于互惠瑞利信道。我们表明,最佳探测信号在低SNR时达到峰值。当信号带宽大且物理信道稀疏时,我们表明有一个最佳的工作带宽可以实现最高的遍历秘密密钥速率。我们还描述了在非遍历机制下的(保密)中断性能。稍后,我们将系统推广到使用随机激励源的情况,在这种情况下,发送方可以根据她的私有随机源选择激励序列。我们实现容量的编码策略涉及密钥生成方案和窃听通道编码。我们表明,密钥容量由源类型和通道类型的随机性组成。我们还描述了关键协议失败的概率的指数范围和信息向窃听者泄漏的指数范围。这些指数使我们能够确定“可高度实现的”秘密密钥率的集合。我们观察到系统中可靠性和保密性之间存在根本的权衡。

著录项

  • 作者

    Chou, Tzu-Han.;

  • 作者单位

    The University of Wisconsin - Madison.;

  • 授予单位 The University of Wisconsin - Madison.;
  • 学科 Engineering Electronics and Electrical.
  • 学位 Ph.D.
  • 年度 2011
  • 页码 146 p.
  • 总页数 146
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号