首页> 外文学位 >Enabling microfluidic diagnostic devices using lateral cavity acoustic transducers for on-chip pumping.
【24h】

Enabling microfluidic diagnostic devices using lateral cavity acoustic transducers for on-chip pumping.

机译:使用侧腔声换能器实现微流体诊断设备的片上泵浦。

获取原文
获取原文并翻译 | 示例

摘要

The global drive for the eradication of infectious diseases in developing countries has led to the need for low-cost, highly sensitive, and truly portable diagnostic platforms. Emerging microfluidic technologies have shown great promise, however some components are still lacking the necessary characteristics to enable low-cost and true portability. Specifically, fluidic driving mechanisms are still inconsistent with the micron scale platform. In this dissertation, a novel microfluidic pumping technology is developed from the harnessing of acoustic microstreaming through the use of trapped air bubbles in lateral cavities which are energized through the use of an external acoustic energy source. This technology, called Lateral Cavity Acoustic Transducers (LCAT), is simulated, designed, and optimized to develop an operational design space for future integration into other microfluidic systems. The technology is then integrated into a recirculation immunoassay device for decreased detection times through fluid flow over the binding sites. The recirculation aspects of the design allow for convection limited biomolecule transport using high flow velocities while maintaining low volumes. A 2X gain in signal intensity is realized compared to conventional microfluidic flow-through immunoassay systems.;Finally, further applications of the LCAT technology are demonstrated through proof-of-concept designs for near instantaneous active mixing, particle switching, and particle trapping. These demonstrated applications with the LCAT technology have the potential to improve detection times, sensitivity, and maintain portability with simple integration into existing microfluidic devices.
机译:全球在发展中国家消灭传染病的动力导致对低成本,高度敏感和真正可移植的诊断平台的需求。新兴的微流体技术已显示出巨大的希望,但是某些组件仍缺乏实现低成本和真正可移植性的必要特性。具体而言,流体驱动机构仍与微米级平台不一致。在本文中,通过利用侧向腔体中捕获的气泡来利用声波微流,从而开发了一种新型的微流泵技术,该气泡通过使用外部声能源而得到激励。该技术被称为横向腔声学换能器(LCAT),经过模拟,设计和优化,可以开发出可用于将来集成到其他微流体系统中的操作设计空间。然后将该技术集成到循环免疫测定设备中,以通过结合位点上的流体流动减少检测时间。设计的再循环方面允许使用高流速同时保持小体积的情况下对流受限的生物分子运输。与传统的微流体流通免疫分析系统相比,信号强度提高了2倍。最后,通过概念验证设计证明了LCAT技术的进一步应用,这些设计用于近乎瞬时的主动混合,粒子切换和粒子捕获。 LCAT技术的这些已证明的应用程序具有通过简单地集成到现有微流控设备中来改善检测时间,灵敏度和保持便携性的潜力。

著录项

  • 作者

    Tovar, Armando Raul.;

  • 作者单位

    University of California, Irvine.;

  • 授予单位 University of California, Irvine.;
  • 学科 Engineering Biomedical.
  • 学位 Ph.D.
  • 年度 2010
  • 页码 114 p.
  • 总页数 114
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号