首页> 外文学位 >Interactive coupling of electronic and optical man-made devices to biological systems.
【24h】

Interactive coupling of electronic and optical man-made devices to biological systems.

机译:电子和光学人造设备与生物系统的交互耦合。

获取原文
获取原文并翻译 | 示例

摘要

Fireflies blink synchronously, lasers are "mode-locked" for amplification, cardiac pacemaker cells maintain a steady heartbeat, and crickets chirps get in step. These are examples of coupled oscillators. Coupled non-linear limit-cycle oscillator models are used extensively to provide information about the collective behavior of many physical and biological systems.; Depending on the system parameters, namely, the coupling coefficient and the time delay in the coupling, these coupled limit-cycle oscillator exhibit several interesting phenomena; they either synchronize to a common frequency, or oscillate completely independent of each other, or drag each other to a standstill i.e., show "amplitude death".; Many neuronal systems exhibit synchronized limit-cycle oscillations in network of electrically coupled cells. The inferior olivary (IO) neuron is an example of such a system. The inferior olive has been widely studied by neuroscientists as it exhibits spontaneous oscillations in its membrane potential, typically in the range of 1--10 Hz. Located in the medulla, the inferior olive is believed to form the neural basis for precise timing and learning in motor circuits by making strong synaptic connections onto Purkinjee cells in the cerebellum.; In this thesis work, we report on work, which focuses on the implementation and study of coupling of a biological circuit, which is the inferior olivary system, with a man-made electronic oscillator, the so-called Chua's circuit. We were able to study the interaction between the two oscillators over a wide range coupling conditions. With increasing coupling strength, the oscillators become phase-locked, or synchronized, but with a phase relationship which is either in- or out-of-phase depending on the detailed adjustment in the coupling. Finally, the coupled system reaches the conditions for amplitude death, a rather fundamental result given that the interaction has taken place between purely biological and man-made circuit elements.
机译:萤火虫同步眨眼,激光被“锁模”放大,心脏起搏器细胞保持稳定的心跳,chi发出声。这些是耦合振荡器的示例。耦合非线性极限循环振荡器模型被广泛用于提供有关许多物理和生物系统的集体行为的信息。根据系统参数,即耦合系数和耦合中的时间延迟,这些耦合的极限周期振荡器表现出一些有趣的现象。它们要么同步到一个共同的频率,要么彼此完全独立地振荡,或者彼此拖到静止,即显示“振幅死亡”。许多神经系统在电耦合细胞网络中显示出同步的极限循环振荡。下橄榄(IO)神经元就是这种系统的一个例子。下橄榄已经被神经科学家广泛研究,因为它的膜电位表现出自发振荡,通常在1--10 Hz的范围内。下橄榄位于髓质,通过在小脑的Purkinjee细胞上建立牢固的突触连接,从而为精确的定时和运动回路学习提供了神经基础。在本论文的工作中,我们报告有关工作的内容,该工作的重点是实现和研究生物回路(下橄榄窝系统)与人造电子振荡器(称为蔡氏电路)的耦合。我们能够研究大范围耦合条件下两个振荡器之间的相互作用。随着耦合强度的增加,振荡器变得锁相或同步,但相位关系取决于耦合的详细调整是同相还是异相。最终,耦合系统达到振幅衰减的条件,这是一个基本的结果,因为纯生物电路和人造电路元件之间已经发生了相互作用。

著录项

  • 作者

    Ozden, Ilker.;

  • 作者单位

    Brown University.;

  • 授予单位 Brown University.;
  • 学科 Physics Optics.
  • 学位 Ph.D.
  • 年度 2004
  • 页码 131 p.
  • 总页数 131
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类 光学;
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号