首页> 外文学位 >Computational microstructure modeling of asphalt mixtures subjected to rate-dependent fracture.
【24h】

Computational microstructure modeling of asphalt mixtures subjected to rate-dependent fracture.

机译:沥青混合料受速率依赖断裂的计算微观结构建模。

获取原文
获取原文并翻译 | 示例

摘要

Computational microstructure models have been actively pursued by the pavement mechanics community as a promising and advantageous alternative to limited analytical and semi-empirical modeling approaches. The primary goal of this research is to develop a computational microstructure modeling framework that will eventually allow researchers and practitioners of the pavement mechanics community to evaluate the effects of constituents and mix design characteristics (some of the key factors directly affecting the quality of the pavement structures) on the mechanical responses of asphalt mixtures. To that end, the mixtures are modeled as heterogeneous materials with inelastic mechanical behavior. To account for the complex geometric characteristics of the heterogeneous mixtures, an image treatment process is used to generate finite element meshes that closely reproduce the geometric characteristics of aggregate particles (size, shape, and volume fraction) that are distributed within a fine aggregate asphaltic matrix (FAM). These two mixture components, i.e., aggregate particles and FAM, are modeled, respectively, as isotropic linear elastic and isotropic linear viscoelastic materials and the material properties required as inputs for the computational model are obtained from simple and expedited laboratory tests.;In addition to the consideration of the complex geometric characteristics and inelastic behavior of the mixtures, this study uses the cohesive zone model to simulate fracture as a gradual and rate-dependent phenomenon in which the initiation and propagation of discrete cracks take place in different locations of the mixture microstructure. Rate-dependent cohesive zone fracture properties are obtained using a procedure that combines laboratory tests of semi-circular bending specimens of the FAM and their numerical simulations. To address the rate-dependent fracture characteristics of the FAM phase, a rate-dependent cohesive zone model is developed and incorporated into the mainframe of ABAQUS in the form of a customized user element (UEL) subroutine. The applicability of the rate-dependent microstructure fracture model is demonstrated and a parametric analysis is performed to evaluate the effects of different mixture parameters on the mechanical behavior of virtually generated hot-mix asphalt (HMA) microstructures. The results presented in this research demonstrate that computational microstructure models, such as the one developed in this study, have a great potential to become efficient design tools for asphalt mixtures and pavement structures.
机译:路面力学界一直在积极地寻求计算微观结构模型,以作为有限的分析和半经验建模方法的有前途和有利的替代方案。这项研究的主要目的是开发一种计算微观结构建模框架,该框架最终将使路面力学界的研究人员和从业人员能够评估成分的影响并混合设计特征(一些直接影响路面结构质量的关键因素) )对沥青混合料的机械响应。为此,将混合物建模为具有非弹性机械行为的异质材料。为了解决非均质混合物的复杂几何特征,使用图像处理过程来生成有限元网格,这些网格紧密地再现了分布在精细骨料沥青基质中的骨料颗粒的几何特征(尺寸,形状和体积分数) (FAM)。这两种混合物成分,即聚集颗粒和FAM,分别以各向同性线性弹性和各向同性线性粘弹性材料进行建模,而作为计算模型输入所需的材料特性则可通过简单而快速的实验室测试获得。考虑到混合物的复杂几何特征和非弹性行为,本研究使用内聚区模型将断裂模拟为一种渐进且与速率相关的现象,其中离散裂纹的发生和扩展发生在混合物微结构的不同位置。速率相关的粘聚区断裂特性是通过将FAM的半圆形弯曲试样的实验室测试及其数值模拟相结合的程序获得的。为了解决FAM相的速率依赖性裂缝特征,开发了速率依赖性内聚区模型,并将其以定制用户元素(UEL)子例程的形式并入ABAQUS的主机中。证明了速率相关的微结构断裂模型的适用性,并进行了参数分析,以评估不同混合参数对虚拟生成的热混合沥青(HMA)微结构的力学行为的影响。这项研究提出的结果表明,计算微观结构模型(例如,在这项研究中开发的模型)具有巨大的潜力,可以成为沥青混合料和路面结构的有效设计工具。

著录项

  • 作者单位

    The University of Nebraska - Lincoln.;

  • 授予单位 The University of Nebraska - Lincoln.;
  • 学科 Engineering Civil.;Engineering Materials Science.
  • 学位 Ph.D.
  • 年度 2011
  • 页码 155 p.
  • 总页数 155
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号