首页> 外文学位 >Design sensitivity analysis and optimization of high frequency structural-acoustic problems using energy finite element method and energy boundary element method.
【24h】

Design sensitivity analysis and optimization of high frequency structural-acoustic problems using energy finite element method and energy boundary element method.

机译:能量有限元法和能量边界元法对高频结构声学问题的设计灵敏度分析和优化。

获取原文
获取原文并翻译 | 示例

摘要

In order to design structures with the best noise, vibration and harshness (NVH) performance level and the least material usage, a thorough research has been conducted in this thesis to analyze the structural-acoustic behavior and perform design sensitivity analysis of the structural-acoustic response with respect to such design variables as material property, sizing, shape and configuration design variables of the structural parts, etc.; First of all, the Finite Element Method (FEM) and Boundary Element Method (BEM) are popular numerical approaches for a low frequency structural-acoustic analysis. Once the structural and acoustic problems are de-coupled, a sequential adjoint variable method is proposed using FEM-BEM specifically for the acoustic performance measure, with the adjoint load calculated only as a function of the geometry of the acoustic cavity, and independent of the structural sizing design. It provides a great advantage during the optimization process because updating the sizing design does not require an update of the adjoint load, saving a significant amount in computational costs.; The Energy Finite Element Method (EFEM) has emerged as an appropriate and popular analysis tool for solving high frequency structural-acoustic problems in terms of energy variables. A variational equation is developed for EFEM, where continuum energy terms are defined for structural and acoustic domains and power transfer coefficients are used to assemble the structural-acoustic system. Continuum design sensitivity formulations for EFEM are developed for parametric, shape and configuration design variables using the direct differentiation method and adjoint variable method. It is shown that the configuration design sensitivity formulation can be reduced to a parametric design sensitivity formulation, and that the adjoint variable method can be developed for system with un-symmetric matrix.; Given the structural energy response obtained using EFEM, the Energy Boundary Element Method (EBEM) can be used to solve high frequency radiation problems. For DSA of high frequency acoustic radiation using EFEM-EBEM, a sequential adjoint variable method similar to the one developed for FEM-BEM is developed and applied for different fluid materials such as air and water as radiation media, which extends applications of the proposed approach from mechanical to naval engineering.
机译:为了设计具有最佳噪声,振动和粗糙度(NVH)性能水平且最少使用材料的结构,本文进行了深入研究,以分析结构声特性并进行结构声设计灵敏度分析对诸如材料特性,结构部件的尺寸,形状和配置设计变量等设计变量的响应;首先,有限元法(FEM)和边界元法(BEM)是用于低频结构声学分析的流行数值方法。一旦将结构和声学问题解耦,就提出了一种使用FEM-BEM的顺序伴随变量法,专门用于声学性能测量,其伴随载荷仅根据声腔的几何形状来计算,并且与声腔的几何形状无关。结构尺寸设计。它在优化过程中提供了很大的优势,因为更新尺寸设计不需要更新伴随的负载,从而节省了大量的计算成本。能量有限元方法(EFEM)已经成为一种解决能量变量方面的高频结构声学问题的合适且流行的分析工具。为EFEM开发了一个变分方程,其中定义了结构域和声域的连续能量项,并使用了功率传递系数来组装结构声系统。使用直接微分法和伴随变量法,针对参数,形状和配置设计变量开发了EFEM的连续体设计灵敏度公式。结果表明,构型设计灵敏度公式可以简化为参数设计灵敏度公式,对于具有非对称矩阵的系统可以发展伴随变量法。给定使用EFEM获得的结构能量响应,可以使用能量边界元方法(EBEM)解决高频辐射问题。对于使用EFEM-EBEM的高频声辐射的DSA,开发了一种类似于FEM-BEM的连续伴随变量方法,并将其应用于不同的流体材料,例如空气和水等作为辐射介质,从而扩展了该方法的应用范围从机械到海军工程。

著录项

  • 作者

    Dong, Jun.;

  • 作者单位

    The University of Iowa.;

  • 授予单位 The University of Iowa.;
  • 学科 Engineering Mechanical.; Applied Mechanics.
  • 学位 Ph.D.
  • 年度 2004
  • 页码 295 p.
  • 总页数 295
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类 机械、仪表工业;应用力学;
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号