首页> 外文学位 >Composite Silver/Titania Photocatalysts for Visible Light Water Splitting: The Role of Silver Surface Plasmons.
【24h】

Composite Silver/Titania Photocatalysts for Visible Light Water Splitting: The Role of Silver Surface Plasmons.

机译:可见光水分解的复合银/二氧化钛光催化剂:银表面等离激元的作用。

获取原文
获取原文并翻译 | 示例

摘要

Photocatalytic conversion of water to hydrogen and oxygen (water splitting) is a potentially promising avenue to the future production of fuels from abundant solar energy. While many semiconductors can absorb solar photons and catalyze the production of hydrogen and oxygen from water, the process typically produces hydrogen at low rates because of inherent deficiencies of most semiconductors.;We have demonstrated the design and evaluation of a composite photocatalyst constructed of Ag nanocubes and nitrogen-doped TiO2 (N-TiO 2), which exhibits 10-fold enhancement in the water splitting rate under visible illumination compared to the rate on N-TiO2 only. While several mechanisms may be important for different systems, in the present work we have demonstrated that the enhancement of semiconductor activity was due to the excitation of the metal surface plasmon resonance (SPR). The SPR enhances the local electric field intensity around the metal nanopartides, which increases the rate of charge carrier formation in the semiconductor. Specially, it was demonstrated that the spatially non-homogeneous SPR-enhanced fields selectively increase the production of charge carriers near the semiconductor surface, partially alleviating the problem of charge carrier recombination in the semiconductor bulk.;We have also developed predictive models that aid in the analysis and design of composite plasmonic metal/semiconductor photocatalysts. The composite photocatalyst performance is dependent on the optical properties of individual components. We have provided a framework to identify and predict the optimal construction of composite photocatalysts based on the optical properties of the constituent building blocks. It was also shown that the geometric arrangement of the building blocks within the composite photocatalysts was a critical variable. To address this we developed a model to evaluate the effect of distance between metal and semiconductor, which begins to shed light on the optimum geometric arrangement of the building blocks within the composites.;While we focused on TiO2-based photocatalysts, the mechanistic understanding and predictive models presented here allows us to transfer the principles to other semiconductors. This, coupled with novel nanoparticle synthesis strategies, allows us to identify and synthesize composite photocatalysts to maximize interaction with any semiconductor under solar illumination, with the ultimate goal of producing highly active photocatalysts for the solar production of hydrogen from water.
机译:将水光催化转化为氢和氧(水分解)是未来利用大量太阳能生产燃料的潜在有希望的途径。虽然许多半导体可以吸收太阳光子并催化水中的氢和氧的产生,但由于大多数半导体的固有缺陷,该过程通常以较低的速率产生氢。我们已经证明了由Ag纳米立方体构成的复合光催化剂的设计和评估。氮掺杂的TiO2(N-TiO 2),在可见光下的水分解速率比仅在N-TiO2上的分解速率提高了10倍。尽管几种机制对于不同的系统可能很重要,但在本工作中,我们已经证明半导体活性的增强是由于金属表面等离子体激元共振(SPR)的激发。 SPR增强了金属纳米粒子周围的局部电场强度,从而增加了半导体中电荷载流子的形成速率。特别地,证明了空间非均匀SPR增强场有选择地增加了半导体表面附近电荷载流子的产生,从而部分缓解了半导体本体中电荷载流子复合的问题。复合等离子体金属/半导体光催化剂的分析与设计。复合光催化剂的性能取决于单个组件的光学性能。我们提供了一个基于组成模块的光学特性来识别和预测复合光催化剂的最佳结构的框架。还显示出,复合光催化剂内结构单元的几何排列是关键变量。为了解决这个问题,我们开发了一个模型来评估金属和半导体之间的距离的影响,该模型开始阐明复合材料中结构单元的最佳几何排列。;虽然我们专注于TiO2基光催化剂,但对机理的理解和这里介绍的预测模型使我们能够将原理转移到其他半导体中。这与新颖的纳米粒子合成策略相结合,使我们能够识别和合成复合光催化剂,以在阳光照射下最大程度地与任何半导体相互作用,最终目的是生产高活性光催化剂,以太阳能从水中产生氢。

著录项

  • 作者

    Ingram, David Brooke.;

  • 作者单位

    University of Michigan.;

  • 授予单位 University of Michigan.;
  • 学科 Engineering Chemical.
  • 学位 Ph.D.
  • 年度 2011
  • 页码 203 p.
  • 总页数 203
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号