首页> 外文学位 >Grain boundary deformation and damage mechanisms in intergranular crack growth of a nickel based superalloy.
【24h】

Grain boundary deformation and damage mechanisms in intergranular crack growth of a nickel based superalloy.

机译:镍基高温合金晶间裂纹扩展中的晶界变形和损伤机理。

获取原文
获取原文并翻译 | 示例

摘要

Aero engine disc failure has been one of the major concerns in the aircraft industries. The nature of failure is catastrophic and furthermore, the processing and manufacturing of turbine disc is expensive which makes is difficult to replace. The failure study of engine disc is concerned with long crack growth in stress concentrated areas which are subjected to various thermo mechanical loading. The objective of this work focuses on dwell time crack growth rates of ME3 (a nickel base superalloy used in aero engine disc) which can be expanded to the life predicting tools as well as understanding the nature of crack growth can further play a vital role consideration during processing to produce better materials.;Different experimental, analytical and numerical investigations were performed to explain the intergranular crack growth mechanism. The crack growth rates are experimentally obtained at different temperatures and dwell time in the Mechanics of Material Laboratory in air and vacuum. With the help of crack growth rates obtained and fractography images intergranular failure is observed in ME3 is explained. Furthermore, rate kinetics of crack growths in air and vacuum environment are discussed which are correlated with the various observations in the specimen after test to identify the failure mechanisms in front of the crack tip. The identified mechanisms in front of crack tip are related to grain boundary sliding and oxygen embrittlement at high temperature. The crack growth rates in ME3 are thus expressed in two models. The first model discussed is related to the kinetics of crack growth which identifies the role of stress, temperature and environment in relevance to activation energy for the fracture mechanism. A second model describes intergranular cracking which physical interpretation and critical grain boundary sliding displacement represent the failure criterion. The interaction of grain boundary sliding and oxygen atoms present results in higher crack growth rate in environment with oxygen atoms than in vacuum.;The nature of the crack growth above and below the observed transitional frequency is defined as cycle dependent and time dependent crack growth. Results indicate that cyclic crack growth increases with dwell time and temperature and the failure mode alters from transgranular to intergranular when the frequency of loading is below the transitional frequency. The time dependent crack growth with intergranular fracture mode in ME3 can be characterized by measuring slip band spacing. Furthermore, the observed energy of activation shows that dual mechanism of grain boundary sliding and embrittlement phenomena present in intergranular failure. The apparent energy of activation decreases with increase of crack length. The grain boundary sliding displacement increases with the temperature and the stress sensitivity decreases with the rise in temperature. The environmental effect can be characterized by concentration of oxygen atoms in the grain boundary. The concentration of oxygen atom in the grain boundary is proportional to stress and temperature. The embrittlement phenomena due to environment are the pinning of the grain boundary sliding dislocation which shortens the critical length of sliding displacements. The relaxation of stress due to grain boundary sliding alters the diffusion kinetics of oxygen in the grain boundary.;The major conclusions drawn are dwell time imposed at the maximum load increases the crack growth rate which switches the failure mode to intergranular. Intergranular failure has a larger slip band spacing than the transgranular failure which depends upon the loading frequency. Intergranular failure in air is due to the interaction of grain boundary sliding and oxygen atom interaction in the grain boundary. Furthermore, the intergranular failure increased with rise in temperature and duration of the loading frequency.
机译:航空发动机盘故障一直是飞机工业中的主要问题之一。故障的性质是灾难性的,此外,涡轮盘的加工和制造昂贵,这使得难以更换。发动机盘的失效研究与应力集中区域的长裂纹扩展有关,应力集中区域承受各种热机械载荷。这项工作的目标集中在ME3(航空发动机盘中使用的镍基高温合金)的保压时间裂纹扩展率上,该扩展率可以扩展到寿命预测工具,并且了解裂纹扩展的性质可以进一步起到至关重要的作用在加工过程中产生更好的材料。;进行了不同的实验,分析和数值研究,以解释晶间裂纹的扩展机理。在空气和真空中,在材料力学力学实验室中,在不同温度和停留时间下通过实验获得了裂纹扩展速率。借助获得的裂纹扩展速率和分形图像,可以解释在ME3中观察到晶间破坏。此外,讨论了在空气和真空环境中裂纹扩展的速率动力学,将其与测试后样品中的各种观察结果相关联,以确定裂纹尖端前面的破坏机理。裂纹尖端前方的确定机制与高温下的晶界滑动和氧脆有关。因此,ME3中的裂纹扩展速率用两种模型表示。讨论的第一个模型与裂纹扩展的动力学有关,后者确定了应力,温度和环境与断裂机理的活化能有关的作用。第二个模型描述了晶间裂纹,其物理解释和临界晶界滑动位移代表了破坏准则。存在的晶界滑动和氧原子的相互作用导致在环境中与氧原子相比在真空中具有更高的裂纹扩展速率。;在观察到的过渡频率之上和之下的裂纹扩展的性质被定义为周期依赖性和时间依赖性裂纹扩展。结果表明,当载荷频率低于过渡频率时,循环裂纹的扩展随停留时间和温度的增加而增加,并且破坏模式从沿晶转变为沿晶。可以通过测量滑移带间距来表征ME3中随晶间断裂模式随时间变化的裂纹扩展。此外,观察到的活化能表明在晶间破坏中存在晶界滑动和脆化现象的双重机理。活化的表观能量随裂纹长度的增加而降低。晶界滑动位移随温度升高而增加,应力敏感性随温度升高而降低。环境效应可以通过晶界中氧原子的浓度来表征。晶界中氧原子的浓度与应力和温度成正比。由于环境引起的脆化现象是晶界滑动位错的钉扎,这缩短了滑动位移的临界长度。晶界滑动引起的应力松弛改变了氧在晶界中的扩散动力学。得出的主要结论是,在最大载荷下施加的停留时间会增加裂纹的生长速率,从而将破坏模式转变为晶间。晶间破坏比跨晶破坏具有更大的滑带间距,后者取决于加载频率。空气中的晶间破坏是由于晶界滑动的相互作用和晶界中氧原子的相互作用引起的。此外,随着温度的升高和加载频率的持续时间,晶间破坏增加。

著录项

  • 作者

    Dahal, Jinesh.;

  • 作者单位

    University of Rhode Island.;

  • 授予单位 University of Rhode Island.;
  • 学科 Engineering Mechanical.
  • 学位 M.S.
  • 年度 2011
  • 页码 327 p.
  • 总页数 327
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号