首页> 外文学位 >Simulation of cohesive particle flows in granular and gas-solid systems.
【24h】

Simulation of cohesive particle flows in granular and gas-solid systems.

机译:颗粒和气固系统中粘性颗粒流的模拟。

获取原文
获取原文并翻译 | 示例

摘要

Cohesive interparticle forces may affect granular and fluidized flow applications by influencing minimum fluidization velocities and segregation behavior, and can lead to complete loss of flowability. These forces include van der Waals, liquid-briding, electrostatic, and magnetic forces. Despite the prevalence of cohesive effects in particulate flows, the incorporation of cohesion into continuum models is limited. Most cohesion models are defined as a continuous function of the separation distance between interacting particles. The continuous nature of these models conflicts with the assumption of instantaneous, binary collision inherent in the kinetic theory used to develop continuum models. A model that incorporates cohesive forces as binary, instantaneous impulses is the square-well model. In this work, the square-well model was incorporated into discrete-particle simulations of granular flow and fluidized flow to test the ability of the model to capture the physics of cohesive flows.;For simple shear flows, an investigation of the input parameter space indicates the presence of two distinct flow regimes. For large cohesive forces, a large, single agglomerate is formed. For moderate cohesive forces, the sheared system is composed of evenly distributed 2-particle, dynamic agglomerates. The results for this regime indicate that cohesion attenuates the stress components at higher solids fractions (in the collisional regime), as compared to the non-cohesive case. At lower solids fractions (kinetic regime), cohesive forces do not impact the observed stress.;Within a fluidized bed simulation, a method to map the parameters of the square-well model to equivalent parameters in the Hamaker model has been developed based on the minimum, relative normal velocity required to escape agglomeration in two-particle simulations. Mapping effectiveness was gauged by measuring the minimum fluidization velocity, mixing index, and average particle movement at varying levels of cohesion.;The cohesive fluidized bed simulation was used to study hysteresis behavior observed during defluidization-fluidization cycles of experimental fluidized beds. In both cohesion models, cohesive particle-particle are the primary cause for the pressure overshoot for the parameters considered. Simulations using the square-well cohesion model indicate that cohesive interactions between particles and the distributor plate (bottom wall) are a secondary mechanism whereas, simulations using the Hamaker model reveal that cohesive interactions between particles and the sidewalls are a secondary mechanism.
机译:内聚颗粒间力可能会影响最小化流化速度和偏析行为,从而影响颗粒状和流化流应用,并可能导致完全丧失流动性。这些力包括范德华力,液体编织力,静电力和磁力。尽管在粒子流中普遍存在内聚效应,但将内聚纳入连续谱模型是有限的。大多数内聚模型被定义为相互作用粒子之间分离距离的连续函数。这些模型的连续性质与用于开发连续模型的动力学理论固有的瞬时二进制碰撞的假设相冲突。结合凝聚力作为二元瞬时脉冲的模型是方阱模型。在这项工作中,将方井模型结合到颗粒流和流化流的离散粒子模拟中,以测试该模型捕获内聚流物理特性的能力。对于简单剪切流,研究输入参数空间表示存在两种不同的流动状态。对于较大的内聚力,会形成较大的单个团聚物。对于适度的内聚力,剪切系统由均匀分布的2粒子动态团聚体组成。与非内聚情况相比,该状态的结果表明内聚力会降低较高固含量(在碰撞状态下)的应力分量。在较低的固体分数(运动状态)下,内聚力不会影响所观察到的应力。在流化床模拟中,已开发了一种将方形孔模型的参数映射到Hamaker模型中等效参数的方法。在两粒子模拟中逃逸聚集所需的最小相对法向速度。通过测量在不同内聚水平下的最小流化速度,混合指数和平均颗粒运动来衡量制图效果。内聚流化床模拟用于研究实验流化床在除液-流化循环期间观察到的滞后行为。在两个内聚模型中,内聚粒子都是导致所考虑参数压力超调的主要原因。使用方阱凝聚力模型的模拟表明,颗粒与分配器板(底壁)之间的凝聚力相互作用是次要机制,而使用Hamaker模型的模拟表明,颗粒与侧壁之间的凝聚力相互作用是次要机理。

著录项

  • 作者

    Weber, Michael Wallace.;

  • 作者单位

    University of Colorado at Boulder.;

  • 授予单位 University of Colorado at Boulder.;
  • 学科 Engineering Chemical.
  • 学位 Ph.D.
  • 年度 2004
  • 页码 204 p.
  • 总页数 204
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号