首页> 外文学位 >Fullband and subband implementations of FastICA algorithm for blind source separation.
【24h】

Fullband and subband implementations of FastICA algorithm for blind source separation.

机译:FastICA算法的全频带和子频带实现,用于盲源分离。

获取原文
获取原文并翻译 | 示例

摘要

In signal processing, blind source separation is a very important problem encountered in many real-time applications. The uniqueness of the blind source separation problem is that it requires the recovery of independent signals from a set of observed mixed signals with no prior information available about the original signals. The radio waves emitted by mobile phones, the speech signals of people in the same room, and the electrical signals coming from different brain cells are some examples of the original signals and the sources generating them. When such signals are captured by microphones, sensors or other receivers they are mixed using different weights by each receiver. These observed mixed signals are our only available information for separation. The observed mixed signals appear completely noisy while the underlying independent signals are highly structured. The term "blind" signifies that there is very little information available to us about the original signals in the separation process.;The blind source separation problem can be addressed by various linear transformation techniques. All these methods require the observed data to be centered: i.e., of zero mean. The classical methods of finding a linear transformation of a random variable can be categorized into second order methods like Principal Component Analysis (PCA) and factor analysis and higher-order methods like projection pursuit, redundancy reduction and blind deconvolution. Independent component analysis is a recently developed and a very efficient linear transformation method for solving the blind source separation problem compared to other classical methods.;In this thesis, the concepts related to independent component analysis and its advantages over other classical linear transformation techniques are discussed. The objective of this thesis is to implement the Independent Component Analysis (ICA) algorithm of fast convergence (namely, FastICA) using the subband and the fullband approaches. This thesis also focuses on the real-time scenario of acoustic microphone path: i.e., the multipath representations of fullband and subband FastICA algorithms are implemented.;In the fullband FastICA, the observed mixed signals are directly fed to the FastICA algorithm to obtain the separated components. In the subband approach, the observed mixed signals are divided into four, eight and sixteen subbands using polyphase filtering and decimation. From the obtained subband mixed signals, a single subband each of the mixed signals are fed to the FastICA algorithm for separation of one subband each of the independent components. The processing required to obtain the fullband independent components from these separated subbands is determined. A comparison is made between the independent components blind separated using the fullband and the subband approaches of the FastICA algorithm.;The multipath representation involves a convolutive mixing process of the individual signals to obtain the observed mixed signals which are fed to the FastICA algorithm. Hence, this is a natural and a real-time process as seen in most applications. The multipath implementation of fullband and subband FastICA is performed as mentioned above and similar comparison is made.;The computational complexity of FastICA using the subband signals is much less than that of the FastICA using the fullband signals. The subband version of FastICA converges faster than the fullband FastICA. Simulation results show that the efficiency of the FastICA algorithm in terms of separation of independent components increases with the increasing number of subbands.;The various applications of independent component analysis methods to solve blind source separation problems observed in various fields are discussed.
机译:在信号处理中,盲源分离是许多实时应用中遇到的非常重要的问题。盲源分离问题的独特性在于,它需要从一组观察到的混合信号中恢复独立信号,而没有关于原始信号的先验信息。移动电话发出的无线电波,同一房间中人的语音信号以及来自不同脑细胞的电信号就是原始信号及其产生源的一些示例。当此类信号被麦克风,传感器或其他接收器捕获时,每个接收器会使用不同的权重将它们混合。这些观察到的混合信号是我们唯一可用于分离的信息。观察到的混合信号看起来完全嘈杂,而底层的独立信号则结构化。术语“盲”表示在分离过程中几乎没有关于原始信号的信息。;盲源分离问题可以通过各种线性变换技术解决。所有这些方法都需要将观察到的数据居中:即均值为零。查找随机变量线性变换的经典方法可以分类为二阶方法,例如主成分分析(PCA)和因子分析,以及高阶方法,例如投影追踪,冗余减少和盲反卷积。独立分量分析是近来发展起来的一种高效的线性变换方法,与其他经典方法相比,它可以解决盲源分离问题。本文讨论了独立分量分析的概念及其相对于其他经典线性变换技术的优势。 。本文的目的是使用子带和全带方法来实现快速收敛的独立分量分析算法(FastICA)。本文还着眼于声学麦克风路径的实时情​​况:即实现全频带和子频带FastICA算法的多路径表示。;在全频带FastICA中,将观察到的混合信号直接馈送到FastICA算法以获得分离的信号。组件。在子带方法中,使用多相滤波和抽取将观察到的混合信号分为四个,八个和十六个子带。从获得的子带混合信号中,将每个混合信号的单个子带馈入FastICA算法,以分离每个独立分量的一个子带。确定从这些分离的子带中获得全频带独立分量所需的处理。在使用FastICA算法的全频带和子带方法盲分离的独立分量之间进行比较。多径表示涉及单个信号的卷积混合过程,以获得观察到的混合信号,这些信号被馈送到FastICA算法。因此,这是在大多数应用程序中看到的自然而实时的过程。如上所述,对全频带和子频带FastICA进行了多路径实现,并且进行了类似的比较。使用子频带信号的FastICA的计算复杂度比使用全频带信号的FastICA的计算复杂度小得多。 FastICA的子带版本收敛速度比全频带FastICA快。仿真结果表明,FastICA算法在分离独立分量方面的效率随着子带数目的增加而提高。讨论了独立分量分析方法在解决各个领域中观测到的盲源分离问题中的各种应用。

著录项

  • 作者

    Palagummi, Susmita.;

  • 作者单位

    Northern Illinois University.;

  • 授予单位 Northern Illinois University.;
  • 学科 Engineering Electronics and Electrical.
  • 学位 M.S.
  • 年度 2010
  • 页码 96 p.
  • 总页数 96
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号