首页> 外文学位 >Gallium nitride HEMT modeling and design for millimeter and sub-millimeter wave power amplifiers through Monte Carlo particle-based device simulations.
【24h】

Gallium nitride HEMT modeling and design for millimeter and sub-millimeter wave power amplifiers through Monte Carlo particle-based device simulations.

机译:通过基于蒙特卡洛粒子的器件仿真,对毫米波和亚毫米波功率放大器进行氮化镓HEMT建模和设计。

获取原文
获取原文并翻译 | 示例

摘要

The drive towards device scaling and large output power in millimeter and sub-millimeter wave power amplifiers results in a highly non-linear, out-of-equilibrium charge transport regime. Particle-based Full Band Monte Carlo device simulators allow an accurate description of this carrier dynamics at the nanoscale.;This work initially compares GaN high electron mobility transistors (HEMTs) based on the established Ga-face technology and the emerging N-face technology, through a modeling approach that allows a fair comparison, indicating that the N-face devices exhibit improved performance with respect to Ga-face ones due to the natural back-barrier confinement that mitigates short-channel-effects. An investigation is then carried out on the minimum aspect ratio (i.e. gate length to gate-to-channel-distance ratio) that limits short channel effects in ultra-scaled GaN and InP HEMTs, indicating that this value in GaN devices is 15 while in InP devices is 7.5. This difference is believed to be related to the different dielectric properties of the two materials, and the corresponding different electric field distributions. The dielectric effects of the passivation layer in millimeter-wave, high-power GaN HEMTs are also investigated, finding that the effective gate length is increased by fringing capacitances, enhanced by the dielectrics in regions adjacent to the gate for layers thicker than 5 nm, strongly affecting the frequency performance of deep sub-micron devices.;Lastly, efficient Full Band Monte Carlo particle-based device simulations of the large-signal performance of mm-wave transistor power amplifiers with high-Q matching networks are reported for the first time. In particular, a CellularMonte Carlo (CMC) code is self-consistently coupled with a Harmonic Balance (HB) frequency domain circuit solver. Due to the iterative nature of the HB algorithm, this simulation approach is possible only due to the computational efficiency of the CMC, which uses pre-computed scattering tables. On the other hand, HB allows the direct simulation of the steady-state behavior of circuits with long transient time. This work provides an accurate and efficient tool for the device early-stage design, which allows a computerbased performance evaluation in lieu of the extremely time-consuming and expensive iterations of prototyping and experimental large-signal characterization.
机译:在毫米波和亚毫米波功率放大器中,朝着器件缩放和大输出功率的追求导致了高度非线性的,失衡的电荷传输机制。基于粒子的全波段蒙特卡洛器件仿真器可以在纳米级上准确描述这种载流子动力学。这项工作首先比较了基于成熟的Ga-face技术和新兴的N-face技术的GaN高电子迁移率晶体管(HEMT),通过允许公平比较的建模方法,表明N面器件相对于Ga面器件表现出改善的性能,这归因于自然的反向势垒限制,可减轻短通道效应。然后对最小长宽比(即栅极长度与栅极到沟道之间的距离比)进行研究,以限制超规模GaN和InP HEMT中的短沟道效应,表明GaN器件中的该值是15,而在InP设备是7.5。该差异被认为与两种材料的不同介电特性以及相应的不同电场分布有关。还研究了钝化层在毫米波大功率GaN HEMT中的介电效应,发现有效边缘长度通过边缘电容增加,而栅极附近区域中厚度大于5 nm的区域中的介电层则增加了有效栅极长度,严重影响深亚微米设备的频率性能。首次报道了基于高效全频带蒙特卡罗粒子的具有高Q匹配网络的毫米波晶体管功率放大器大信号性能的设备仿真。特别是,CellularMonte Carlo(CMC)码与谐波平衡(HB)频域电路求解器自洽耦合。由于HB算法的迭代性质,仅由于使用预先计算的散射表的CMC的计算效率,这种模拟方法才有可能。另一方面,HB允许直接仿真具有较长瞬态时间的电路的稳态行为。这项工作为设备的早期设计提供了一个准确而有效的工具,该工具可以基于计算机的性能评估来代替原型设计和实验性大信号表征的极其耗时且昂贵的迭代。

著录项

  • 作者

    Guerra, Diego.;

  • 作者单位

    Arizona State University.;

  • 授予单位 Arizona State University.;
  • 学科 Engineering Electronics and Electrical.
  • 学位 Ph.D.
  • 年度 2011
  • 页码 232 p.
  • 总页数 232
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号