首页> 外文学位 >Building Applied Photovoltaic Arrays: Side-by-Side Array Comparison With and Without Fan Cooling.
【24h】

Building Applied Photovoltaic Arrays: Side-by-Side Array Comparison With and Without Fan Cooling.

机译:构建应用的光伏阵列:有和没有风扇冷却的并排阵列比较。

获取原文
获取原文并翻译 | 示例

摘要

Building Applied Photovoltaics (BAPV) form an essential part of today's solar economy. This thesis is an effort to compare and understand the effect of fan cooling on the temperature of rooftop photovoltaic (PV) modules by comparing two side-by-side arrays (test array and control array) under identical ambient conditions of irradiance, air temperature, wind speed and wind direction. The lower operating temperature of PV modules due to fan operation mitigates array non uniformity and improves on performance. A crystalline silicon (c-Si) PV module has a light to electrical conversion efficiency of 14--20%. So on a cool sunny day with incident solar irradiance of 1000 W/m2 , a PV module with 15% efficiency, will produce about only 150 watts. The rest of the energy is primarily lost in the form of heat. Heat extraction methods for BAPV systems may become increasingly higher in demand as the hot stagnant air underneath the array can be extracted to improve the array efficiency and the extracted low-temperature heat can also be used for residential space heating and water heating. Poly c-Si modules experience a negative temperature coefficient of power at about -0.5% /° C. A typical poly c-Si module would experience power loss due to elevation in temperature, which may be in the range of 25 to 30% for desert conditions such as that of Mesa, Arizona. This thesis investigates the effect of fan cooling on the previously developed thermal models at Arizona State University and on the performance of PV modules/arrays. Ambient conditions are continuously monitored and collected to calculate module temperature using the thermal model and to compare with actually measured temperature of individual modules. Including baseline analysis, the thesis has also looked into the effect of fan on the test array in three stages of 14 continuous days each. Multiple Thermal models are developed in order to identify the effect of fan cooling on performance and temperature uniformity. Although the fan did not prove to have much significant cooling effect on the system, but when combined with wind blocks it helped improve the thermal mismatch both under low and high wind speed conditions.
机译:建筑应用光伏(BAPV)构成了当今太阳能经济的重要组成部分。本文的目的是通过在相同的辐照度,空气温度,环境温度,相同的环境条件下比较两个并排阵列(测试阵列和控制阵列)来比较和理解风扇冷却对屋顶光伏(PV)模块温度的影响。风速和风向。由于风扇运行,PV模块的工作温度较低,可减轻阵列的不均匀性并提高性能。晶体硅(c-Si)PV模块的光电转换效率为14--20%。因此,在凉爽的晴天,入射太阳辐射为1000 W / m2时,效率为15%的PV组件将仅产生150瓦特。其余的能量主要以热的形式损失。 BAPV系统的排热方法的需求可能会越来越高,因为可以抽出阵列下方的停滞热空气来提高阵列效率,并且所抽出的低温热量也可以用于居住空间供暖和热水供应。多晶硅c-Si模块的功率温度系数约为-0.5%/°C。沙漠条件,例如亚利桑那州的梅萨(Mesa)。本文研究了风扇冷却对亚利桑那州立大学先前开发的热模型以及光伏模块/阵列性能的影响。连续监测和收集环境条件,以使用热模型计算模块温度,并与各个模块的实际测量温度进行比较。包括基线分析在内,论文还研究了风扇对测试阵列的影响,这三个阶段每个阶段连续14天。为了确定风扇冷却对性能和温度均匀性的影响,开发了多个散热模型。尽管没有证明风扇对系统有很大的冷却效果,但是当与风挡结合使用时,它有助于改善低风速和高风速条件下的热失配。

著录项

  • 作者

    Chatterjee, Saurabh.;

  • 作者单位

    Arizona State University.;

  • 授予单位 Arizona State University.;
  • 学科 Alternative Energy.;Energy.;Engineering Electronics and Electrical.
  • 学位 M.S.
  • 年度 2011
  • 页码 102 p.
  • 总页数 102
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号