首页> 外文学位 >All-optical polarization switching techniques based on the coherent many-body interactions and the virtual excitation of spin-polarized carriers in semiconductor quantum wells.
【24h】

All-optical polarization switching techniques based on the coherent many-body interactions and the virtual excitation of spin-polarized carriers in semiconductor quantum wells.

机译:基于相干多体相互作用和半导体量子阱中自旋极化的载流子的虚拟激发的全光极化切换技术。

获取原文
获取原文并翻译 | 示例

摘要

All-optical polarization switches have the potential for combining high-speed with high-contrast and, therefore, of playing an important role as the demand for higher bandwidth components continues to increase. In this work, two new techniques for achieving ultrafast polarization modulation are presented that are based on the coherent nonlinear response of unstrained semiconductor multiple quantum wells (MQWs).; The first switch that is presented utilizes resonant excitonic nonlinearities, where the underlying mechanisms are the coherent optical many-body interactions. Proof-of-principle measurements are presented that show that the device turns on and off in ∼1.5 ps at ∼80 K and exhibits a contrast ratio of ∼8:1 using only ten wells. The experimental results are compared with a phenomenological model, which indicates that the many-body effects are solely responsible for the polarization modulation and that the switching times are determined by the dephasing time. However, although the switching times of the device are not restricted by the lifetime of the excited carriers, the carriers do accumulate in the MQW until they recombine or are swept out by an electric field. This carrier accumulation may ultimately limit the repetition rate of the device. By contrast, the second switch presented in this work does not suffer from the same limitation.; The second switch design is based on the virtual excitation of spin-polarized carriers. For this device, the polarization modulation is accomplished by using a circularly polarized control pulse that is tuned near, but below, resonance, to produce a highly spin-polarized population of carriers that only exists while the control is present in the MQW. Using this technique, the switch is shown to achieve contrast ratios of >300:1 and a switching time of ∼415 fs in a 40 well sample cooled to ∼100 K. The switching mechanisms are investigated by performing a combination of differential transmission and ellipsometric measurements to study the spin-dependent absorptive and refractive changes induced by the control. In addition, a microscopic theory is used to examine the nonlinearities contributing to the operation of the switch and to explore possible avenues for device optimization.
机译:全光偏振开关具有将高速和高对比度结合在一起的潜力,因此,随着对更高带宽组件的需求不断增加,它发挥了重要作用。在这项工作中,基于无应变半导体多量子阱(MQW)的相干非线性响应,提出了两种实现超快极化调制的新技术。提出的第一个开关利用共振激子非线性,其中潜在的机制是相干光学多体相互作用。进行的原理证明测量表明,该装置在约80 K下以约1.5 ps的速度开启和关闭,并且仅使用10口井就可呈现出约8:1的对比度。将实验结果与现象学模型进行了比较,该模型表明多体效应是偏振调制的唯一原因,并且切换时间由移相时间决定。但是,尽管器件的开关时间不受激发的载流子寿命的限制,但载流子确实会积聚在MQW中,直到它们重新结合或被电场清除。这种载流子积累最终可能会限制设备的重复率。相比之下,本文中介绍的第二个开关没有相同的限制。第二种开关设计基于自旋极化载波的虚拟激励。对于此设备,通过使用在谐振附近但在谐振以下调谐的圆偏振控制脉冲来完成极化调制,以产生高度自旋极化的载流子群,该载流子仅在控制存在于MQW中时存在。使用这种技术,显示出在冷却至约100 K的40孔样品中,开关可实现> 300:1的对比度和约415 fs的开关时间。通过将差动透射法和椭圆偏振法结合起来研究了开关机构测量以研究由对照引起的自旋依赖性吸收和折射变化。此外,使用微观理论来检查有助于开关操作的非线性因素,并探索设备优化的可能途径。

著录项

  • 作者

    Gansen, Eric John.;

  • 作者单位

    The University of Iowa.;

  • 授予单位 The University of Iowa.;
  • 学科 Engineering Electronics and Electrical.; Physics Condensed Matter.; Physics Optics.
  • 学位 Ph.D.
  • 年度 2004
  • 页码 213 p.
  • 总页数 213
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类 无线电电子学、电信技术;光学;
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号