首页> 外文学位 >In vivo regulatory phosphorylation of bacterial-type phosphoenolpyruvate carboxylase from developing castor oil seeds.
【24h】

In vivo regulatory phosphorylation of bacterial-type phosphoenolpyruvate carboxylase from developing castor oil seeds.

机译:来自发育中的蓖麻籽的细菌型磷酸烯醇丙酮酸羧化酶的体内调节磷酸化。

获取原文
获取原文并翻译 | 示例

摘要

PEPC [PEP(phosphoenolpyruvate) carboxylase] is an essential and tightly controlled enzyme located at the core of plant C-metabolism. It fulfils a broad spectrum of non-photosynthetic functions, particularly the anaplerotic replenishment of tricarboxylic acid cycle intermediates consumed during biosynthesis and N-assimilation. In plants, a small multigene family encodes several closely related plant-type PEPC (PTPC) isozymes along with a distantly related bacterial-type PEPC (BTPC) isozyme. The PTPCs are well studied∼ 110-kDa subunits that typically exist as a homotetramer (Class-1 PEPC). By contrast, little is known about the larger ∼118-kDa BTPC isozyme except that it occurs in developing castor (Ricinus communis) endosperm in tight association with PTPC subunits as a ∼900-kDa hetero-octameric complex (Class-2 PEPC) that is greatly desensitized to metabolic effectors compared to Class-1 PEPC. This thesis elucidates the physiological purpose of the BTPC subunits by examining their structure/function relationship within Class-2 PEPC and identifying mechanisms of post-translational control. Recombinant expression and purification of the castor bean BTPC revealed unusual physical and kinetic properties including a remarkable insensitivity to metabolic effectors and a dependence upon PTPC subunits for structural stability. The first purification of a non-proteolyzed plant Class-2 PEPC complex was performed, and the kinetic analysis determined that the BTPC and PTPC subunits have complimentary catalytic properties. The BTPC subunits' high Km(PEP) and desensitization to metabolic effectors may function as a metabolic overflow mechanism for sustaining flux from PEP to malate when PTPC subunits become feedback inhibited. An anti-PTPC co-immunopurification strategy was utilized to highly enrich non-proteolyzed BTPC from developing castor endosperm for downstream immunological and mass spectrometric analysis. BTPC was in vivo phosphorylated at multiple novel sites, identified by mass spectrometry as Thr4 or 5, Ser425 and Ser451. Phosphosite-specific antibodies towards Ser425 and Ser451 confirmed the existence of these sites in vivo and comparisons of Ser425 phosphorylation patterns established that the castor BTPC and PTPC phosphorytation sites are regulated independently. Phosphomimetic mutants of Ser425 caused BTPC inhibition by increasing its Km(PEP) and sensitivity to feedback inhibition. These results establish a novel mechanism of PEPC control whose implications within plant carbon metabolism are discussed.
机译:PEPC [PEP(磷酸烯醇丙酮酸)羧化酶]是一种基本且受严格控制的酶,位于植物C代谢的核心。它具有广泛的非光合功能,特别是在生物合成和N同化过程中消耗的三羧酸循环中间体的补给补给。在植物中,一个小的多基因家族编码几种密切相关的植物型PEPC(PTPC)同工酶以及一种远距离相关的细菌型PEPC(BTPC)同工酶。对PTPC进行了充分的研究,发现110-kDa的亚基通常以均四聚体(Class-1 PEPC)存在。相比之下,对约118kDa的较大BTPC同工酶知之甚少,除了它发生在发育中的蓖麻(Ricinus communis)胚乳中,与PTPC亚基紧密结合为约900kDa的异八聚体复合物(2类PEPC),与1类PEPC相比,它对代谢效应剂的敏感性大大降低。本文通过研究BTPC亚基在2类PEPC中的结构/功能关系并确定翻译后调控的机制,阐明了其生物学目的。蓖麻子BTPC的重组表达和纯化显示出异常的物理和动力学特性,包括对代谢效应子的显着不敏感性以及对PTPC亚基结构稳定性的依赖性。进行了非蛋白水解的植物2类PEPC复合物的首次纯化,动力学分析确定BTPC和PTPC亚基具有互补的催化特性。 BTPC亚基的高Km(PEP)和对代谢效应子的脱敏作用可能是当PTPC亚基受到反馈抑制时维持从PEP到苹果酸的通量的代谢溢流机制。一种抗PTPC的共免疫纯化策略可用于从蓖麻胚乳中高度富集非蛋白水解的BTPC,用于下游免疫学和质谱分析。 BTPC在体内被多个新位点磷酸化,质谱鉴定为Thr4或5,Ser425和Ser451。针对Ser425和Ser451的磷酸化特异性抗体证实了体内这些位点的存在,并且对Ser425磷酸化模式的比较确定了蓖麻子BTPC和PTPC磷酸化位点是独立调节的。 Ser425的拟荧光突变体通过增加其Km(PEP)和对反馈抑制的敏感性而引起BTPC抑制。这些结果建立了PEPC控制的一种新机制,该机制讨论了植物碳代谢中的意义。

著录项

  • 作者

    O'Leary, Brendan Michael.;

  • 作者单位

    Queen's University (Canada).;

  • 授予单位 Queen's University (Canada).;
  • 学科 Biology Botany.
  • 学位 Ph.D.
  • 年度 2011
  • 页码 196 p.
  • 总页数 196
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号