首页> 外文学位 >Structure and plasticity potential of neural networks in the cerebral cortex.
【24h】

Structure and plasticity potential of neural networks in the cerebral cortex.

机译:大脑皮层神经网络的结构和可塑性潜力。

获取原文
获取原文并翻译 | 示例

摘要

In this thesis, we first described a theoretical framework for the analysis of spine remodeling plasticity. We provided a quantitative description of two models of spine remodeling in which the presence of a bouton is either required or not for the formation of a new synapse. We derived expressions for the density of potential synapses in the neuropil, the connectivity fraction, which is the ratio of actual to potential synapses, and the number of structurally different circuits attainable with spine remodeling. We calculated these parameters in mouse occipital cortex, rat CA1, monkey V1, and human temporal cortex. We found that on average a dendritic spine can choose among 4-7 potential targets in rodents and 10-20 potential targets in primates. The neuropil's potential for structural circuit remodeling is highest in rat CA1 (7.1-8.6 bits/mum3) and lowest in monkey V1 (1.3-1.5 bits/mum 3 We next studied the role neuron morphology plays in defining synaptic connectivity. As previously stated it is clear that only pairs of neurons with closely positioned axonal and dendritic branches can be synaptically coupled. For excitatory neurons in the cerebral cortex, ). We also evaluated the lower bound of neuron selectivity in the choice of synaptic partners. Post-synaptic excitatory neurons in rodents make synaptic contacts with more than 21-30% of pre-synaptic axons encountered with new spine growth. Primate neurons appear to be more selective, making synaptic connections with more than 7-15% of encountered axons.;We next studied the role neuron morphology plays in defining synaptic connectivity. As previously stated it is clear that only pairs of neurons with closely positioned axonal and dendritic branches can be synaptically coupled. For excitatory neurons in the cerebral cortex, such axo-dendritic oppositions, or potential synapses, must be bridged by dendritic spines to form synaptic connections. To explore the rules by which synaptic connections are formed within the constraints imposed by neuron morphology, we compared the distributions of the numbers of actual and potential synapses between pre- and post-synaptic neurons forming different laminar projections in rat barrel cortex. Quantitative comparison explicitly ruled out the hypothesis that individual synapses between neurons are formed independently of each other. Instead, the data are consistent with a cooperative scheme of synapse formation, where multiple-synaptic connections between neurons are stabilized, while neurons that do not establish a critical number of synapses are not likely to remain synaptically coupled.;In the above two projects, analysis of potential synapse numbers played an important role in shaping our understanding of connectivity and structural plasticity. In the third part of this thesis, we shift our attention to the study of the distribution of potential synapse numbers. This distribution is dependent on the details of neuron morphology and it defines synaptic connectivity patterns attainable with spine remodeling. To better understand how the distribution of potential synapse numbers is influenced by the overlap and the shapes of axonal and dendritic arbors, we first analyzed uniform disconnected arbors generated in silico. The resulting distributions are well described by binomial functions. We used a dataset of neurons reconstructed in 3D and generated the potential synapse distributions for neurons of different classes. Quantitative analysis showed that the binomial distribution is a good fit to this data as well. All distributions considered clustered into two categories, inhibitory to inhibitory and excitatory to excitatory projections. We showed that the distributions of potential synapse numbers are universally described by a family of single parameter (p) binomial functions, where p = 0.08, and for the inhibitory and p = 0.19 for the excitatory projections.;In the last part of this thesis an attempt is made to incorporate some of the biological constraints we considered thus far, into an artificial neural network model. It became clear that several features of synaptic connectivity are ubiquitous among different cortical networks: (1) neural networks are predominately excitatory, containing roughly 80% of excitatory neurons and synapses, (2) neural networks are only sparsely interconnected, where the probabilities of finding connected neurons are always less than 50% even for neighboring cells, (3) the distribution of connection strengths has been shown to have a slow non-exponential decay. In the attempt to understand the advantage of such network architecture for learning and memory, we analyzed the associative memory capacity of a biologically constrained perceptron-like neural network model. The artificial neural network we consider consists of robust excitatory and inhibitory McCulloch and Pitts neurons with a constant firing threshold. Our theoretical results show that the capacity for associative memory storage in such networks increases with an addition of a small fraction of inhibitory neurons, while the connection probability remains below 50%. (Abstract shortened by UMI.)
机译:在本文中,我们首先描述了分析脊柱重塑可塑性的理论框架。我们提供了两种脊柱重塑模型的定量描述,在这种模型中,无论是否需要新创建的突触,都必须存在按钮。我们导出了神经突中潜在突触的密度,连通性分数(即实际突触与潜在突触的比率)以及脊柱重塑可获得的结构不同的回路数的表达式。我们在小鼠枕叶皮质,大鼠CA1,猴子V1和人类颞叶皮质中计算了这些参数。我们发现,平均而言,树状脊椎可以在啮齿动物的4-7个潜在目标和灵长类动物的10-20个潜在目标之间进行选择。在大鼠CA1中,神经纤维的结构回路重塑潜力最高(7.1-8.6位/妈妈3),在猴子V1中最低(1.3-1.5位/妈妈3)我们接下来研究了神经元形态在定义突触连通性中的作用。很明显,只有成对的神经元具有紧密定位的轴突和树突状分支才能被突触耦合(对于大脑皮层中的兴奋性神经元)。我们还评估了突触伴侣选择中神经元选择性的下限。啮齿动物中的突触后兴奋性神经元与新的脊柱生长遇到的突触前轴突的接触比例超过21-30%。灵长类神经元似乎更具选择性,与超过7-15%的轴突建立突触连接。我们接下来研究了神经元形态在定义突触连通性中的作用。如前所述,很明显,只有成对的神经元具有紧密定位的轴突和树突分支。对于大脑皮层中的兴奋性神经元,此类轴突-树突状对立物或潜在的突触必须通过树突棘来桥接以形成突触连接。为了探索在神经元形态施加的约束内形成突触连接的规则,我们比较了在大鼠桶状皮层中形成不同层状投影的突触前和突触后神经元之间实际和潜在突触数量的分布。定量比较明确地排除了以下假​​设:神经元之间的单个突触彼此独立形成。相反,数据与突触形成的协作方案一致,其中神经元之间的多个突触连接得以稳定,而未建立关键数目突触的神经元不太可能保持突触耦合。;在上述两个项目中,潜在突触数量的分析在塑造我们对连通性和结构可塑性的理解中起着重要作用。在本文的第三部分,我们将注意力转移到潜在突触数量分布的研究上。这种分布取决于神经元形态的细节,它定义了脊柱重塑可获得的突触连接模式。为了更好地了解潜在突触数量的分布是如何受轴突和树突状乔木的重叠以及形状的影响,我们首先分析了计算机生成的均匀的断开的乔木。二项式函数很好地描述了所得的分布。我们使用了以3D重建的神经元数据集,并为不同类别的神经元生成了潜在的突触分布。定量分析表明,二项式分布也非常适合此数据。认为所有分布都分为两类,抑制性抑制和兴奋性预测。我们表明,潜在的突触数量的分布通常由一族单参数(p)二项式函数描述,其中p = 0.08,对于抑制性而言,p = 0.19对于兴奋性预测。试图将迄今为止我们考虑的一些生物学限制因素纳入人工神经网络模型。显然,在不同的皮层网络中,突触连接的几个特征无处不在:(1)神经网络主要是兴奋性的,包含大约80%的兴奋性神经元和突触;(2)神经网络仅是稀疏互连的,在其中发现概率即使对于相邻的细胞,连接的神经元也总是小于50%。(3)已显示连接强度的分布具有缓慢的非指数衰减。试图了解这种网络体系结构对于学习和记忆的优势,我们分析了生物受限的感知器样神经网络模型的联想记忆能力。我们考虑的人工神经网络由具有恒定触发阈值的强大的兴奋性和抑制性McCulloch神经元和Pitts神经元组成。我们的理论结果表明,在此类网络中,关联记忆存储的容量会随着添加一小部分抑制性神经元而增加,而连接概率仍低于50%。 (摘要由UMI缩短。)

著录项

  • 作者

    Fares, Tarec Edmond.;

  • 作者单位

    Northeastern University.;

  • 授予单位 Northeastern University.;
  • 学科 Biology Neuroscience.;Physics General.
  • 学位 Ph.D.
  • 年度 2010
  • 页码 125 p.
  • 总页数 125
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号