首页> 外文学位 >Graph and combinatorial algorithms for geometric constraint solving.
【24h】

Graph and combinatorial algorithms for geometric constraint solving.

机译:用于几何约束求解的图和组合算法。

获取原文
获取原文并翻译 | 示例

摘要

Geometric constraints are at the heart of CAD/CAM applications and also arise in many geometric modeling contexts such as virtual reality, robotics, molecular modeling, teaching geometry, etc.; Informally, a geometric constraint problem consists of a finite set of geometric objects and a finite set of constraints between them. The geometric objects are drawn from a fixed set of types such as points, lines, circles and conics in the plane, or points, lines, planes, cylinders and spheres in 3 dimensions. The constraints are spatial and include logical constraints such as incidence, tangency, perpendicularity and metric constraints such as distance, angle, radius. The spatial constraints can usually be written as algebraic equations whose variables are the coordinates of the participating geometric objects. A solution of a geometric constraint problem is a real zero of the corresponding algebraic system.; Currently there is a lack of effective spatial variational constraint solvers and assembly constraint solvers that scale to large problem sizes and can be used interactively by the designer as conceptual tools throughout the design process.; The requirement is a constraint solver that uses geometric domain knowledge to develop a plan for decomposing the constraint system into small subsystems, whose solutions can be recombined by solving other small subsystems. The primary aim of this decomposition plan is to restrict the use of direct algebraic/numeric solvers to subsystems that are as small as possible. Hence the optimal or most efficient decomposition plan would minimize the size of the largest such subsystem. Any geometric constraint solver should first solve the problem of efficiently finding a close-to-optimal decomposition-recombination (DR) plan, because that dictates the usability of the solver.; In this thesis we state this problem of finding a close-to-optimal solution as a problem that deals with weighted graphs and also identify several important subproblems. One class of such subproblem involves finding dense subgraphs---graphs such that sum of weights of its edges is greater than sum of weights of its vertices. Dense graphs that present interest for finding a DR-plan are (a) minimum (smallest possible dense graphs), (b) minimal (not containing any other dense subgraphs), (c) maximum (largest dense ones), (d) maximal (not contained in any other dense subgraph).; This thesis presents polynomial time algorithms for problems (b), (c) and (d). Problem (a) is shown to be NP-complete, and various approximation algorithms are suggested, as well as explicit solutions for special cases that arise from CAD/CAM applications.
机译:几何约束是CAD / CAM应用程序的核心,并且也出现在许多几何建模环境中,例如虚拟现实,机器人技术,分子建模,教学几何等。非正式地,几何约束问题由一组有限的几何对象和一组在它们之间的约束组成。几何对象是从一组固定的类型中绘制的,例如平面中的点,线,圆和圆锥形,或3维中的点,线,平面,圆柱体和球体。这些约束是空间约束,包括逻辑约束(例如,入射角,相切,垂直度)和度量约束(例如,距离,角度,半径)。空间约束通常可以写成代数方程,其变量是参与的几何对象的坐标。几何约束问题的解决方案是相应代数系统的实零。当前,缺乏有效的空间变化约束求解器和装配约束求解器,它们可以缩放到较大的问题大小,并且可以在整个设计过程中被设计人员交互用作概念工具。需求是一种约束求解器,它使用几何领域知识来制定将约束系统分解为小型子系统的计划,可以通过求解其他小型子系统来重新组合其解决方案。此分解计划的主要目的是将直接代数/数值求解器的使用限制为尽可能小的子系统。因此,最佳或最有效的分解计划将使最大的此类子系统的大小最小化。任何几何约束求解器都应首先解决有效地寻找接近最佳的分解重组(DR)计划的问题,因为这决定了求解器的可用性。在这篇论文中,我们将找到一个接近最佳解的问题描述为一个加权图问题,并确定了几个重要的子问题。一类此类子问题涉及找到密集的子图-使得其边的权重之和大于其顶点的权重之和。感兴趣的寻找DR计划的密集图是(a)最小值(最小的可能密集图),(b)最小值(不包含任何其他密集子图),(c)最大值(最大稠密图),(d)最大值(不包含在任何其他密集子图中)。本文提出了针对问题(b),(c)和(d)的多项式时间算法。问题(a)被证明是NP完全的,并提出了各种近似算法,以及针对CAD / CAM应用中出现的特殊情况的显式解决方案。

著录项

  • 作者

    Lomonosov, Andrew.;

  • 作者单位

    University of Florida.;

  • 授予单位 University of Florida.;
  • 学科 Computer Science.
  • 学位 Ph.D.
  • 年度 2004
  • 页码 p.3545
  • 总页数 193
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类 自动化技术、计算机技术;
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号