首页> 外文学位 >Numerical analysis of river spanning rock U-weirs: Evaluating effects of structure geometry on local hydraulics.
【24h】

Numerical analysis of river spanning rock U-weirs: Evaluating effects of structure geometry on local hydraulics.

机译:跨河岩石U型坝的数值分析:评估结构几何对局部水力的影响。

获取原文
获取原文并翻译 | 示例

摘要

River spanning rock weirs are being constructed for water delivery as well as to enable fish passage at barriers and provide or improve the aquatic habitat for endangered fish species. Many design methods are based upon anecdotal information applicable to narrow ranges of channel conditions and rely heavily on field experience and engineering judgment. Without an accurate understanding of physical processes associated with river spanning rock weirs, designers cannot address the failure mechanisms of these structures. This research examined the applicability of a Computational Fluid Dynamics (CFD) model, U 2RANS, to simulate the complex flow patterns associated with numerous U-weir configurations.;3D numerical model simulations were used to examine the effects of variations in U-weir geometry on local hydraulics (upstream water surface elevations and downstream velocity and bed shear stress). Variations in structure geometry included: arm angle, arm slope, drop height, and throat width. Various combinations of each of these parameters were modeled at five flow rates: 1/10 bankfull discharge, 1/5 bankfull discharge, 1/3 bankfull discharge, 2/3 bankfull discharge and bankfull discharge. Numerical modeling results duplicated both field observations and laboratory results by quantifying high shear stress magnification near field and lab scour areas and low shear stress magnification near field and lab depositional areas. The results clearly showed that by altering the structure geometry associated with U-weirs, local flow patterns such as upstream flow depth, downstream velocity, and bed shear stress distributions could be altered significantly. With the range of parameters tested, the maximum increase in channel velocity ranged from 1.24 to 4.04 times the reference velocity in the channel with no structure present. Similarly, the maximum increase in bed shear stress caused by altering structure geometry ranged from 1.57 to 7.59 times the critical bed shear stress in the channel for a given bed material size. For the range of structure parameters and channel characteristics modeled, stage-discharge relationships were also developed utilizing output from the numerical model simulations.;These relationships are useful in the design process when estimating the backwater effect from a structure for irrigation diversion as well as determining the spacing between structures when multiple structures are used in series. Recommendations were also made, based on the analysis and conclusions gathered from the current study, for further research. The analysis and results of the current study as well as laboratory studies conducted by Colorado State University and field reconnaissance by the Bureau of Reclamation provide a process-based method for understanding how structure geometry affects flow characteristics, scour development, fish passage, water delivery, and overall structure stability. Results of the numerical modeling allow designers to utilize the methods and results of the analysis to determine the appropriate U-weir geometry for generating desirable flow parameters (i.e. upstream flow depth and downstream velocity and bed shear stress magnification) to meet project specific goals. The end product of this research provides tools and guidelines for more robust structure design or retrofits based upon predictable engineering and hydraulic performance criteria.
机译:正在建造跨河堰坝,用于输水以及使鱼类通过障碍,并为濒危鱼类提供或改善水生生境。许多设计方法都是基于适用于狭窄通道条件的轶事信息,并且在很大程度上取决于现场经验和工程判断。如果不准确了解与跨河堰相关的物理过程,设计人员将无法解决这些结构的破坏机理。这项研究检查了计算流体动力学(CFD)模型U 2RANS的适用性,以模拟与众多U型堰构型相关的复杂流动模式。; 3D数值模型仿真用于检验U型堰几何形状变化的影响局部水力(上游水面高程,下游速度和河床切应力)。结构几何形状的变化包括:手臂角度,手臂倾斜度,跌落高度和喉咙宽度。这些参数中的每一个的各种组合在五个流速下建模:1/10满溢流量,1/5满溢流量,1/3满溢流量,2/3满溢流量和bankfull流量。数值模拟结果通过量化现场和实验室冲刷区域附近的高剪切应力放大倍率以及现场和实验室沉积区域附近的低剪切应力放大倍率来复制现场观察结果和实验室结果。结果清楚地表明,通过改变与U型堰相关的结构几何形状,可以显着改变局部流动模式,例如上游流动深度,下游速度和床剪切应力分布。在测试的参数范围内,通道速度的最大增加范围是不存在结构的通道中参考速度的1.24到4.04倍。类似地,对于给定的床料尺寸,由改变结构几何形状引起的床切应力的最大增加范围是通道中临界床切应力的1.57倍至7.59倍。对于建模的结构参数和通道特性范围,还利用数值模型仿真的输出来开发水位流量关系;这些关系在设计过程中在估算灌溉引水结构的回水效应以及确定水位时很有用。串联使用多个结构时,结构之间的间距。根据从当前研究中收集到的分析和结论,还提出了建议,以供进一步研究。当前研究的分析和结果以及由科罗拉多州立大学进行的实验室研究以及由垦殖局进行的野外侦查提供了一种基于过程的方法,用于了解结构几何形状如何影响流量特性,冲刷发育,鱼通过,水输送,和整体结构稳定性。数值建模的结果使设计人员可以利用分析的方法和结果来确定适当的U型几何形状,以生成所需的流量参数(即上游流量深度和下游速度以及床层剪应力放大率)以满足项目的特定目标。这项研究的最终产品根据可预测的工程和水力性能标准,提供了用于更鲁棒的结构设计或翻新的工具和指南。

著录项

  • 作者单位

    Colorado State University.;

  • 授予单位 Colorado State University.;
  • 学科 Hydrology.;Engineering Environmental.;Engineering Civil.
  • 学位 Ph.D.
  • 年度 2011
  • 页码 207 p.
  • 总页数 207
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号