首页> 外文学位 >A dynamic surface drag model for large-eddy simulation of turbulent boundary-layer flow over fractal-like roughness.
【24h】

A dynamic surface drag model for large-eddy simulation of turbulent boundary-layer flow over fractal-like roughness.

机译:动态表面阻力模型,用于大涡模拟分形粗糙度上的湍流边界层流。

获取原文
获取原文并翻译 | 示例

摘要

Many flows especially in geophysics involve turbulent boundary layers forming over rough surfaces with multiscale height distribution. Such surfaces pose special challenges for large eddy simulation (LES) when the filter scale is such that only part of the roughness elements of the surface can be resolved. Here we consider LES of flows over rough surfaces with power-law height spectra Eh(k) ∼ kbeta s (-3 ≤ betas -1), as often encountered in natural terrains. The surface is decomposed into resolved and subgrid-scale height contributions. The effects of the unresolved small-scale height fluctuations are modeled using a local equilibrium wall model (log-law or Monin-Obukhov similarity), but the required aerodynamic roughness length must be specified. It is expressed as the product of the subgrid-scale root-mean-square of the height distribution and an unknown dimensionless quantity, alpha, the roughness parameter. Instead of specifying this parameter in an ad-hoc empirical fashion, a dynamic methodology is proposed based on test-filtering the surface forces and requiring that the total drag force be independent of filter scale or resolution. This dynamic surface roughness model is inspired by the Germano identity traditionally used to determine model parameters for closing subgrid-scale stresses in the bulk of a turbulent flow. As a first step, a new method to simulate flow over horizontally resolved, but vertically unresolved surfaces is developed and tested. Then, a series of LES of fully developed flow over multiscale rough surfaces are performed, considering various types of multiscale surfaces: The first type is isotropic, built using random-phase Fourier modes with prescribed power-law spectra. The second type is highly anisotropic, namely evolved fluvial-like landscapes obtained from a numerical solution of the Kardar-Parisi-Zhang equation. Finally, a fluvial landscape from the Llano River catchment in Texas is considered. Results show that the dynamic model yields well-defined, rapidly converging, values of alpha. Effects of spatial resolution and spectral slopes are investigated. The accuracy of the dynamic model is tested by showing that predicted mean velocity profiles are approximately independent of resolution for the dynamically computed values of alpha, whereas resolution-dependent results are obtained when using other, incorrect, alpha values. Strong dependence of alpha on betas is found. The model is reported to be less accurate when the surface deviates from scale-invariance. In an appendix, some ideas for a similarly-posed dynamic approach for estimating fluxes of passive scalar into a turbulent boundary layer over a rough surface are presented; there arc some inherent challenges due to limitations of the Reynolds analogy, since inertial pressure force effects associated with turbulent momentum transport are not present for scalar transport.
机译:许多流动,特别是在地球物理学中,涉及在粗糙表面上形成多尺度高度分布的湍流边界层。当过滤器比例只能解决部分表面粗糙度元素时,此类表面对于大型涡流仿真(LES)会带来特殊的挑战。在这里,我们考虑在自然律中经常遇到的具有幂律高度谱Eh(k)〜kbeta s(-3≤betas <-1)的粗糙表面上的水流LES。将该表面分解为解析的和次网格规模的高度贡献。未解决的小尺度高度波动的影响使用局部平衡壁模型(对数律或Monin-Obukhov相似性)进行建模,但必须指定所需的空气动力学粗糙度长度。它表示为高度分布的子网格规模均方根与未知的无量纲量α(粗糙度参数)的乘积。代替以临时的经验方式指定此参数,而是提出了一种基于对表面力进行测试过滤并要求总拖曳力与过滤器比例或分辨率无关的动态方法。这种动态表面粗糙度模型的灵感来自于传统上用来确定模型参数的Germano身份,该模型参数用于封闭大部分湍流中的亚网格尺度应力。第一步,开发并测试了一种新方法,用于模拟水平分解但垂直未分解的表面上的流动。然后,考虑各种类型的多尺度表面,执行一系列在多尺度粗糙表面上充分发育的LES:第一种是各向同性的,使用具有规定幂律谱的随机相位傅里叶模式建立。第二种是高度各向异性的,即从Kardar-Parisi-Zhang方程的数值解获得的类似河流的地貌。最后,考虑了得克萨斯州拉诺河流域的河流景观。结果表明,动态模型产生定义明确的,快速收敛的alpha值。研究了空间分辨率和光谱斜率的影响。通过显示预测的平均速度分布图与动态计算的α值的分辨率近似独立来测试动态模型的准确性,而当使用其他不正确的α值时,可获得分辨率相关的结果。发现了alpha对beta的强烈依赖。当表面偏离尺度不变性时,该模型的准确性较差。在附录中,提出了一些类似姿势的动态方法的想法,该方法用于估计被动标量进入粗糙表面上湍流边界层的通量。由于雷诺类比的局限性,存在一些固有的挑战,因为标量运输不存在与湍流动量运输相关的惯性压力作用。

著录项

  • 作者

    Anderson, William.;

  • 作者单位

    The Johns Hopkins University.;

  • 授予单位 The Johns Hopkins University.;
  • 学科 Applied Mechanics.;Engineering Mechanical.
  • 学位 Ph.D.
  • 年度 2011
  • 页码 142 p.
  • 总页数 142
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号