首页> 外文学位 >A stereoscopic PIV study on the behavior of near-field wingtip vortex structures.
【24h】

A stereoscopic PIV study on the behavior of near-field wingtip vortex structures.

机译:立体PIV研究近场翼尖涡结构的行为。

获取原文
获取原文并翻译 | 示例

摘要

Wingtip vortex flow is of great importance because of its effect on practical problems such as landing separation distances for aircraft, blade/vortex interactions on helicopter blades, and propeller cavitations on ships. Extensive investigations have been conducted to improve the understanding of the tip vortex structure and its dissipation or persistence analytically, numerically, and experimentally. The universal feature of the water/wind tunnel generated wing tip vortex reported in the past is vortex wandering---the slow side-to-side movement of the wing-tip vortex core behind the wing. Thus, a primary result of wandering is that fixed probe measurements of velocity and pressure cannot be trusted at distances more than one chord downstream of the wing.;For reliable data, the current study investigates the behavior and structure of the near-field wing-tip vortex generated by a square-tipped, rectangular NACA0012 wing by using the stereoscopic Particle Image Velocimetry (SPIV) technique. SPIV is a spatially resolved, instantaneous, three velocity component non-intrusive measurement technique used to conserve the three key feature of the wing-tip vortex during the measurement---small vortex core dimension, core structure, and strong unsteadiness of the core flow, which wasn't possible with classical instrumentations.;One of the great advantages of SPIV over the classical technique is that the vortex wandering can be removed by tracking the center of the vortex in every SPIV frame. By tracking the center of the vortex, the wandering and turbulence in the vortex can be separated. The results show that after re-centering the velocity field, the T.K.E. and Reynolds stress distributions become lower by more than twice at 4.0c downstream. This suggests that the vortex itself is laminar after the rollup and the higher turbulence intensity in the vortex core, reported in past studies, is mainly due to vortex wandering. This SPIV method is applied to investigate the angle of attack effect, downstream effect, and wind tunnel wall effect. Past studies suggest that the vortex rollup is completed about two chord lengths behind the wing trailing edge. The SPIV method confirmed that the vortex rollup is completed at 3.0c downstream for alpha= 5.0° and 4.0c for alpha= 10.0° by observing the re-centered Reynolds stress distributions. As for correcting the velocity profile, Devenport et al. (1996) found an analytical way to predict the wandering free velocity profile using the Reynolds stress at the vortex center. The velocity profile predicted by the Devenport et al. (1996) method is compared with the SPIV re-centered velocity profile. The results show that the two profiles agree with each other very well in the vicinity of core when the vortex wandering is large enough (about 20% of vortex core radius).
机译:Wingtip涡流非常重要,因为它会影响实际问题,例如飞机的着陆分离距离,直升机叶片上的叶片/涡流相互作用以及船舶上的螺旋桨空化。进行了广泛的研究,以提高对尖端涡结构及其在分析,数值和实验上的耗散或持久性的理解。过去报道的由水/风洞产生的机翼尖端涡流的普遍特征是涡流徘徊-机翼尖端涡流核在机翼后面的缓慢的左右移动。因此,游荡的主要结果是在距离机翼下游不超过一个弦的距离处,不能相信固定的探针测量速度和压力。为了获得可靠的数据,本研究调查了近场机翼的行为和结构,通过使用立体粒子图像测速(SPIV)技术,由正方形,矩形NACA0012机翼产生的尖端涡。 SPIV是一种空间解析的瞬时三速度分量非侵入式测量技术,用于在测量过程中保留翼尖涡旋的三个关键特征-小涡旋核心尺寸,核心结构以及核心流动的强烈不稳定性SPIV相对于经典技术的一大优势是,可以通过跟踪每个SPIV帧中涡旋的中心来消除涡旋漂移。通过跟踪旋涡的中心,可以分离旋涡中的游荡和湍流。结果表明,在重新确定速度场的中心之后,T.K.E。雷诺应力分布在下游4.0c处降低了两倍以上。这表明,涡流在累积后是层流的,过去研究中报道的涡流核中较高的湍流强度主要是由于涡流的漂移。该SPIV方法用于研究攻角效应,下游效应和风洞壁效应。过去的研究表明,涡旋累积在机翼后缘后约两个弦长处完成。 SPIV方法通过观察重新定心的雷诺应力分布,确认了在α= 5.0°的下游3.0c和α= 10.0°的4.0c下游完成了涡旋累积。至于校正速度分布,Devenport等人。 (1996)发现了一种分析方法来预测涡流中心处的雷诺应力,以预测自由流动的轮廓。 Devenport等人预测的速度分布图。 (1996年)的方法与SPIV重心速度分布图进行了比较。结果表明,当涡流足够大时(涡流芯半径的20%左右),这两个轮廓在芯附近非常吻合。

著录项

  • 作者

    Igarashi, Hirofumi.;

  • 作者单位

    Iowa State University.;

  • 授予单位 Iowa State University.;
  • 学科 Engineering Aerospace.
  • 学位 M.S.
  • 年度 2011
  • 页码 65 p.
  • 总页数 65
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号