首页> 外文学位 >Development of Analytical Models to Study Musculoskeletal and Vascular Damage Leading to Hand-Arm Vibration Syndrome.
【24h】

Development of Analytical Models to Study Musculoskeletal and Vascular Damage Leading to Hand-Arm Vibration Syndrome.

机译:用于研究导致手部振动综合征的肌肉骨骼和血管损伤的分析模型的开发。

获取原文
获取原文并翻译 | 示例

摘要

Prolonged exposure to tool vibration causes vascular, neurological and musculoskeletal abnormalities in hand-arm system, which is collectively known as hand-arm vibration syndrome (HAVS). HAVS is a major musculoskeletal disorder (MSD) affecting large numbers of construction workers and miners. One of the major symptoms of HAVS is vibration white finger (VWF) caused by exaggerated vasoconstriction of the arteries and skin arterioles. A significant number of construction workers, miners and even dentists are affected by HAVS. The precise mechanism or pathogenesis of the syndrome still remains unclear, and there is a need for better understanding of various biodynamic responses induced by vibration. Accurate analysis of handarm vibration response is very difficult due to the complexity of the hand-arm structure such as redundancy of the musculo-tendon unit, active participation from central nervous system, inherent non-linearity and heavy damping effect. Three fundamental modeling methods are developed in this study to understand the cause of musculoskeletal responses and vascular system responses of the hand-arm system.;The first model is a musculoskeletal kinematic model developed by adopting a modified Hill's model to describe the behavior of the muscle and tendon. At first, the force in each muscle necessary to generate the grip force is determined by a quadratic optimization process. Using the force determined, the activation level of the muscle is found by assuming that the muscle-tendon undergoes an isometric contraction during the gripping. With the activation level known, the muscle-tendon system is simplified by a set of spring-mass-damper based on the assumption that the muscle response to the vibration is passive. From dynamic analysis it is shown that smaller intrinsic muscles are vulnerable to high frequency vibrations even if the overall response of the hand-arm is small.;The second model addresses vasospasm in finger artery caused by vibration, therefore a small artery is modeled as a fluid filled elastic tube whose diameter changes along the axial direction. Equations of motion are developed by considering interactions between the fluid, artery wall and soft-tissue bed. It is shown that the artery system shows a spatial resonance which responds with the highest amplitude at the location determined by the vibration frequency. This implies that a long-term use of one type of tool will induce high-level stresses at a few identical locations of the artery that correspond to the major frequency components of the tool. Hardening and deterioration of the artery at these locations may be a possible cause of VWF. The wave model is applied also to arteries of larger size such as coronary arteries, employing the equivalent circuit representation.;The third model is a flexible finite element based model of human index finger, which is created with most anatomical substructures, taking into account nonlinear tissue properties to study localized stress and strain pattern under dynamic loading. High strain and energy absorption can cause local tissue and nerve damage leading to numbness.;All these unique modeling techniques provide much needed methodology to understand various aspects of HAVS and its precursor.
机译:长时间暴露于工具振动会导致手臂系统中的血管,神经和肌肉骨骼异常,这统称为“手臂振动综合症”(HAVS)。 HAVS是一种严重的肌肉骨骼疾病(MSD),会影响大量的建筑工人和矿工。 HAVS的主要症状之一是动脉和皮肤小动脉血管过度收缩引起的白振动手指(VWF)。 HAVS影响了很多建筑工人,矿工甚至牙医。该综合征的确切机制或发病机理仍不清楚,因此需要更好地了解由振动引起的各种生物动力反应。由于手臂结构的复杂性(例如,肌腱单元的冗余,中枢神经系统的主动参与,固有的非线性和沉重的阻尼效果),因此准确分析手臂的振动响应非常困难。本研究开发了三种基本的建模方法,以了解手臂系统的肌肉骨骼反应和血管系统反应的原因。第一个模型是通过采用改良的希尔模型描述肌肉行为而开发的肌肉骨骼运动学模型。和肌腱。首先,通过二次优化过程确定产生抓地力所需的每块肌肉中的力。使用所确定的力,通过假设肌肉腱在抓握过程中经历等距收缩来发现肌肉的激活水平。在已知激活水平的前提下,基于对振动的肌肉响应是被动的假设,通过一组弹簧质量阻尼器可以简化肌肉腱系统。通过动态分析表明,即使手部的整体响应较小,较小的固有肌肉也容易受到高频振动的影响;第二种模型处理了由振动引起的手指动脉的血管痉挛,因此将小动脉建模为流体填充的弹性管,其直径沿轴向变化。通过考虑流体,动脉壁和软组织床之间的相互作用来发展运动方程。结果表明,动脉系统显示出空间共振,该共振在由振动频率确定的位置上以最高振幅响应。这意味着长期使用一种工具会在对应于工具主要频率分量的动脉的几个相同位置处引起高水平的应力。这些位置处的动脉硬化和变质可能是VWF的可能原因。使用等效电路表示法,波浪模型也可应用于较大尺寸的动脉,例如冠状动脉。第三模型是基于食指的柔性有限元模型,该模型是在大多数解剖子结构下创建的,并考虑了非线性组织特性以研究动态载荷下的局部应力和应变模式。高应变和能量吸收会导致局部组织和神经损伤,导致麻木感。所有这些独特的建模技术为了解HAVS及其前体的各个方面提供了急需的方法。

著录项

  • 作者

    Pattnaik, Shrikant P.;

  • 作者单位

    University of Cincinnati.;

  • 授予单位 University of Cincinnati.;
  • 学科 Health Sciences Occupational Health and Safety.;Engineering Mechanical.;Biophysics Biomechanics.
  • 学位 Ph.D.
  • 年度 2011
  • 页码 167 p.
  • 总页数 167
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号