首页> 外文学位 >Optimization of well configuration for a sedimentary enhanced geothermal reservoir.
【24h】

Optimization of well configuration for a sedimentary enhanced geothermal reservoir.

机译:沉积增强型地热储层井配置的优化。

获取原文
获取原文并翻译 | 示例

摘要

The extraction of geothermal energy in the form of hot water from sedimentary rock formations could expand the current geothermal energy resources toward new regions. In sedimentary geothermal reservoirs with low permeability, enhancement techniques (e.g., well hydraulic stimulation) are needed to improve the hydraulic connection between the wells to achieve commercial production/injection rates (Cho et al., 2015). The design of the well configuration was investigated in this research work. The performance of the sedimentary geothermal reservoir was evaluated using numerical reservoir modeling, which allowed studying different well configurations and productivity enhancement techniques. This research develops a methodology to maximize thermal recovery from the geothermal system. The objective is to maximize the well productivity/injectivity index by systematically changing the value of influencing variables of the system, subject to a constraint of thermal breakthrough time greater than or equal to 30 years (i.e., time required by a commercial successful project).;The reservoir simulation cases are classified into four main models based on well configuration, shown in Figure 3.3: one vertical well doublet system with hydraulic fractures, and three horizontal well configurations with open-hole completion, longitudinal fractures and transverse fractures, respectively. Since permeability is the fundamental property which decides the necessity of enhancement techniques, the proper permeability estimation is selected first.;Based on that and sensitivity analysis of the variables, including well type (vertical or horizontal), well spacing, length of horizontal section, hydraulic fracture direction, fracture half-length, fracture spacing, dimensionless fracture conductivity and ratio of reservoir vertical permeability to horizontal permeability, the most efficient well configuration and the corresponding influential variables are determined. The application of this methodology provides the procedure to identify the required hydraulic fracture parameters for each well configuration that maximizes the geothermal energy recovery.;The final step is to identify the optimization of well configuration. Surface response models based on the multiple linear regression method are built to analyze the change of reservoir thermal evolution and flow behavior in terms of influential parameters in well configuration. A horizontal well system with longitudinal fractures is the most favorable in pursuing a long thermal breakthrough time. A horizontal well system with multi-stage transverse fractures is most efficient to increase the productivity index and injectivity index. For optimal well configuration designs in both well configurations, the well spacing is assigned to the minimum value, and the well horizontal length can be chosen as long as reservoir and technique permits. This design achieves minimum the thermal breakthrough time requirement and maximum productivity and injectivity indices.
机译:从沉积岩层中以热水形式提取地热能可以将当前的地热能资源扩展到新的地区。在低渗透性的沉积地热储层中,需要增强技术(例如井水压增产)来改善井之间的水力连接,以实现商业化的生产/注入速率(Cho等人,2015)。在这项研究工作中对井配置的设计进行了研究。使用数值储层模型评估了沉积地热储层的性能,从而可以研究不同的井配置和增产技术。这项研究开发了一种方法,可以最大限度地利用地热系统进行热能回收。目的是通过系统地改变系统影响变量的值来最大化油井生产率/注入指数,但要遵守热突破时间大于或等于30年(即商业成功项目所需的时间)的约束。基于油井构造,油藏模拟案例可分为四个主要模型,如图3.3所示:一个具有水力压裂的垂直井双重井系统,分别具有裸眼完井,纵向压裂和横向裂缝的三个水平井构造。由于渗透率是决定增强技术必要性的基本属性,因此,首先应选择适当的渗透率估算方法;在此基础上,对井眼类型(垂直或水平),井眼间距,水平断面长度等变量进行敏感性分析,确定了水力压裂方向,裂缝半长,裂缝间距,无因次裂缝电导率和储层垂直渗透率与水平渗透率之比,最有效的井配置和相应的影响变量。这种方法的应用为确定每口井配置所需的水力压裂参数提供了程序,从而最大化了地热能的采收率。最后一步是确定井配置的优化。建立了基于多元线性回归方法的地表响应模型,根据影响井参数的参数,分析了储层热演化和流动行为的变化。具有纵向裂缝的水平井系统最适合追求较长的热突破时间。具有多级横向裂缝的水平井系统最有效地提高了生产率指数和注入指数。为了在两种井配置中实现最佳的井配置设计,将井间距指定为最小值,并且只要储层和技术允许,就可以选择井水平长度。该设计实现了最小的热穿透时间要求以及最大的生产率和注入指数。

著录项

  • 作者

    Zhou, Mengnan.;

  • 作者单位

    Colorado School of Mines.;

  • 授予单位 Colorado School of Mines.;
  • 学科 Petroleum engineering.;Sedimentary geology.
  • 学位 M.S.
  • 年度 2016
  • 页码 86 p.
  • 总页数 86
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号