首页> 外文学位 >Integrating Finite Element and Optimization Software for Shape Optimization: A Micropump Design Case Study.
【24h】

Integrating Finite Element and Optimization Software for Shape Optimization: A Micropump Design Case Study.

机译:集成有限元和优化软件进行形状优化:Micropump设计案例研究。

获取原文
获取原文并翻译 | 示例

摘要

This thesis explains the process of simulating a two dimensional micropump that includes integrated components using multi-physics finite element analysis software. This thesis is an exploration of how a micro-pump should be modeled for optimization using multi-physics finite element software, not an exploration of what an optimally designed micro-pump would look like. A micropump is a device used to pump micro amounts of fluid. Due to its accuracy and a wide variety of applications, micropumps are becoming more popular to the researchers and manufacturers. Depending on the applications and mechanisms used, there are many different kinds of micropump available on the commercial market. In this case study, the micropump has an oscillatory diaphragm that causes a pressure difference in a pumping chamber that creates fluid flow controlled by valves. The diaphragm is actuated by applying electrical energy to lead-zirconate-titanate (PZT) that is transformed into elastic deformation that causes volumetric displacement inside the pump chamber.;This thesis also explains how the performance of the micropump can be optimized by varying the geometry of the micropump. Geometry coordinates have been considered as a set of variable parameters which can create any shapes within the range. A line search optimization method has been used to maximize the outlet flow and pressure of the micropump. In this method, the optimization subroutine sends a set of coordinate parameters that creates a new geometry in the finite element software, meshes and evaluates a performance function which is then fed back to the optimization subroutine for the next function call.;This thesis also explains how a nonlinear and complex system can be optimized by applying non linear constraints such as a minimum pressure constraint at the outlet. This thesis is useful to many areas of design, where not only the product but its efficiency is important. The approach demonstrated is useful when considering any finite element parameter that can be optimized, providing greater flexibility in modeling and designing physical objects and for design validation.;This thesis will explain how an oscillatory valve micropump can be modeled, simulated and optimized using finite element and optimization software. The two dimensional dynamic nonlinear model involves many different application modes such as the Navier-Stokes and piezo plane strain equations. The geometry, solid-liquid interactions, and moving boundaries make the model complex to solve analytically. Commercially available multi-physics finite element software has facilitated the development of the micropump model with its capability of creating scripts of the model that could be run under external optimization program control.
机译:本文介绍了使用多物理场有限元分析软件模拟包含集成组件的二维微型泵的过程。本文是对如何使用多物理场有限元软件对微泵进行建模以进行优化的探索,而不是对经过优化设计的微泵的外观进行了探索。微型泵是用于泵送微量流体的设备。由于它的准确性和广泛的应用范围,微型泵在研究人员和制造商中越来越受欢迎。根据所使用的应用程序和机制,在商业市场上有许多不同类型的微型泵可用。在本案例研究中,微型泵具有振动膜片,该振动膜片在泵送腔内引起压力差,从而产生由阀控制的流体流量。通过将电能施加到锆钛酸铅(PZT)上来驱动隔膜,隔膜将其转化为弹性变形,从而导致泵室内的容积位移。;本文还解释了如何通过改变几何形状来优化微泵的性能微型泵。几何坐标已被视为一组可变参数,可以创建该范围内的任何形状。线搜索优化方法已用于最大化微型泵的出口流量和压力。在这种方法中,优化子例程会发送一组坐标参数,这些坐标参数会在有限元软件中创建一个新的几何图形,然后进行网格划分并评估性能函数,然后将其反馈给优化子例程以进行下一个函数调用。如何通过应用非线性约束(例如出口处的最小压力约束)来优化非线性复杂系统。本文对于许多设计领域都是有用的,不仅产品而且其效率都很重要。该方法在考虑可优化的任何有限元参数时非常有用,为在物理对象的建模和设计以及设计验证中提供了更大的灵活性。本文将解释如何使用有限元对振荡阀微型泵进行建模,模拟和优化。和优化软件。二维动态非线性模型涉及许多不同的应用模式,例如Navier-Stokes和压电平面应变方程。几何形状,固液相互作用和移动边界使模型变得复杂,难以解析。商业上可用的多物理场有限元软件凭借其创建可在外部优化程序控制下运行的模型脚本的能力,促进了微型泵模型的开发。

著录项

  • 作者

    Aziz, Md. Abdul.;

  • 作者单位

    University of Calgary (Canada).;

  • 授予单位 University of Calgary (Canada).;
  • 学科 Engineering Mechanical.
  • 学位 M.Eng.
  • 年度 2011
  • 页码 147 p.
  • 总页数 147
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号