首页> 外文学位 >Novel Metal-Incorporated Mesoporous Silicates as Catalysts for Liquid Phase Ethylene Epoxidation with H2O2 Oxidant.
【24h】

Novel Metal-Incorporated Mesoporous Silicates as Catalysts for Liquid Phase Ethylene Epoxidation with H2O2 Oxidant.

机译:新型金属结合介孔硅酸盐作为H2O2氧化剂液相乙烯环氧化的催化剂。

获取原文
获取原文并翻译 | 示例

摘要

Ethylene Oxide (C2H4O, EO), is one of the essential building blocks for a variety of consumer products, including plastics, fibers, sports gear, paints, coolants and detergents. Currently, the worldwide production of EO exceeds 20 Mt/yr, making it one of the high volume chemical intermediate in the industry. At present, EO is manufactured by catalytic processes using alumina supported Ag catalysts at relatively high temperature (T = 200-260 °C) and pressure (P = 10-30 bar). This process converts approximately 10-15% feedstock to CO2, which represents a monetary loss of approximately ;Researchers at the University of Kansas Center for Environmentally Beneficial Catalysis (CEBC) reported a liquid phase ethylene epoxidation process that eliminated ethylene burning to CO2. In this process, the ethylene gas is compressed under pressure and dissolved in a liquid reaction medium containing 50 wt.% H2O2/H2O as oxidant, pyridine N-oxide as promoter and methyl trioxorhenium (MTO) as homogeneous catalyst. This process produces EO with near complete selectivity with no CO2 detected in either the liquid or gas phases under relatively mild conditions (T = 35 °C, P = 50 bar). Further, the H2O 2 is fully utilized toward EO formation. Preliminary economic analysis suggests that the Re-based EO process has the potential to be competitive with the conventional process if the MTO catalyst remains active, selective and stable for at least one year at a leaching rate of approximately 0.11 lb MTO/h. This stringent performance metric coupled with the low abundance and high cost of Re metal pose significant challenges for the commercialization of Re-based technology. This motivated further investigation on alternative ethylene epoxidation catalysts that are relatively inexpensive. Literature survey identified tungsten (W) and niobium (Nb) based catalysts as possible alternatives. Indeed, W, Nb based catalysts catalyzed ethylene epoxidation with significant activity with aqueous hydrogen peroxide (H2O 2) as the oxidant and methanol as solvent under mild operating conditions (35 °C and 50 bar) where CO2 formation is avoided. The ethylene productivity on these catalysts (up to 4,304 g EO/h/kg Nb) either matches or surpasses that observed on the conventional Ag-based heterogeneous catalyst (with O2 as oxidant) as well as a Re-based homogeneous catalyst (with H2O2 as oxidant). The measured EO productivity over Nb-TUD-1 materials (342-4304 g EO/h/kg Nb) spans a greater range than those observed with Nb-KIT-6 (234-794 g EO/h/kg Nb), Nb-KIT-5 (273-867 g EO/h/kg Nb) and Nb-MCM-48 (71-219 g EO/h/kg Nb) materials at similar operating conditions. However, significant H2O2 decomposition (H2O 2 utilization to form EO < 78.7%) and Nb leaching (up to 88.7% after a 5 h batch run) were observed in all cases. Complementary DFT-based computational studies by collaborators in the KU Department of Chemistry, using minimalist models of the catalytically active metal site and their reaction with H 2O2, suggest that a reaction mechanism involving Bronsted acid sites, particularly niobium hydroxide sites, could contribute to H 2O2 decomposition and metal leaching. Indeed, Nb-TUD-1 catalysts prepared with lower metal loadings show significantly reduced Bronsted acidity and display markedly higher H2O2 utilization and EO productivity. These results provide valuable guidance for future computational and experimental investigations aimed at developing stable and practically viable catalysts.
机译:环氧乙烷(C2H4O,EO)是各种消费产品(包括塑料,纤维,运动装备,油漆,冷却剂和清洁剂)的重要组成部分之一。目前,世界范围内的EO生产量每年超过20 Mt,使其成为该行业中大量化学中间体之一。目前,EO是通过在较高温度(T = 200-260°C)和压力(P = 10-30 bar)下使用氧化铝负载的银催化剂通过催化工艺制造的。该过程将大约10-15%的原料转化为CO2,这意味着大约一笔金钱损失;堪萨斯大学环境效益催化中心(CEBC)的研究人员报告说,液相乙烯环氧化过程消除了乙烯燃烧成CO2的现象。在该方法中,乙烯气体在压力下被压缩并溶解在液体反应介质中,该液体反应介质包含50重量%的H 2 O 2 / H 2 O作为氧化剂,吡啶N-氧化物作为助催化剂和甲基三氧or(MTO)作为均相催化剂。此过程在相对温和的条件下(T = 35°C,P = 50 bar)在液相或气相中均检测到几乎完全选择性的EO,而未检测到CO2。此外,H 2 O 2被充分利用以形成EO。初步的经济分析表明,如果MTO催化剂在约0.11 lb MTO / h的浸出率下保持活性,选择性和稳定至少一年,则Re-based EO工艺具有与传统工艺竞争的潜力。这种严格的性能指标,加上稀土金属的低含量和高成本,对基于稀土的技术的商业化提出了重大挑战。这激发了对相对便宜的替代性乙烯环氧化催化剂的进一步研究。文献调查确定了钨(W)和铌(Nb)基催化剂是可能的替代品。的确,在温和的操作条件(35°C和50 bar)下,避免了CO2的形成,W,Nb基催化剂以过氧化氢水溶液(H2O 2)作为氧化剂和甲醇作为溶剂催化了具有显着活性的乙烯环氧化。这些催化剂上的乙烯生产率(高达4,304 g EO / h / kg Nb)与传统的基于Ag的非均相催化剂(以O2为氧化剂)和基于Re的均相催化剂(以H2O2为准)相匹配或超过作为氧化剂)。在Nb-TUD-1材料上测得的EO生产率(342-4304 g EO / h / kg Nb)比在Nb-KIT-6上观察到的EO生产率(234-794 g EO / h / kg Nb),Nb更大-KIT-5(273-867 g EO / h / kg Nb)和Nb-MCM-48(71-219 g EO / h / kg Nb)材料在相似的操作条件下。然而,在所有情况下,均观察到显着的H2O2分解(H2O 2利用率形成EO <78.7%)和Nb浸出(5 h分批运行后高达88.7%)。 KU大学化学系的合作者基于DFT进行的补充计算研究,使用催化活性金属位点及其与H 2O2反应的极简模型,表明涉及布朗斯台德酸位点(尤其是氢氧化铌位点)的反应机理可能有助于H 2O2分解和金属浸出。实际上,以较低的金属负载量制备的Nb-TUD-1催化剂显示出布朗斯台德酸度显着降低,并显示出明显更高的H2O2利用率和EO生产率。这些结果为旨在开发稳定且实用的催化剂的未来计算和实验研究提供了宝贵的指导。

著录项

  • 作者

    Yan, Wenjuan.;

  • 作者单位

    University of Kansas.;

  • 授予单位 University of Kansas.;
  • 学科 Chemical engineering.;Analytical chemistry.
  • 学位 Ph.D.
  • 年度 2016
  • 页码 161 p.
  • 总页数 161
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号