首页> 外文学位 >Mechanical behavior of silicon carbide particle reinforced aluminum matrix composites.
【24h】

Mechanical behavior of silicon carbide particle reinforced aluminum matrix composites.

机译:碳化硅颗粒增强铝基复合材料的力学性能。

获取原文
获取原文并翻译 | 示例

摘要

Preferred alignment of reinforcement particles has been observed in extruded particle reinforced metal matrix composites. This preferential alignment of particles influences the mechanical behavior of the composite. In the first part of this study, the effect of anisotropy in the alignment of silicon carbide particles on the tensile and fatigue behavior of extruded 2080 aluminum matrix composites for a range of volume fraction was examined. Microstructure characterization showed a preferred alignment of the reinforcement particles parallel to the extrusion axis, although the degree of alignment decreased with increasing reinforcement volume fraction. Young's modulus and tensile strength parallel to the extrusion axis were higher than perpendicular to the extrusion axis. The relationship between tensile and fatigue behavior of the composites to the degree of anisotropy in alignment of the reinforcement particles is discussed.; Conventionally, in numerical analysis, a unit cell is modeled to simulate the deformation behavior of particle reinforced composites. This approach does not yield accurate results due to the oversimplification of the composite microstructure. Therefore, in the second part of this study numerical analysis was carried out using real microstructure in two- and three-dimensions to accurately predict the composite properties. The particle alignment-induced changes in stress-strain behavior were modeled using two-dimensional microstructure-based finite element method, yielding good agreement with experimental results. A serial sectioning process was used to reconstruct three-dimensional microstructure of the composite. The Young's modulus and overall stress-strain behavior of the composite predicted by the three-dimensional microstructure-based model correlated very well with experimental results. It was found that the three-dimensional microstructure-based model predicted the uniaxial tensile behavior of the composite accurately than the three-dimensional unit cell models.; Particle reinforced aluminum alloys are increasingly becoming materials of choice for replacement of conventional aluminum alloys. The fatigue crack growth behavior of these materials is one of the important properties in most of the applications. To date a complete understanding of the fatigue crack growth mechanisms have not been reached. The main reason for this is the lack of data at load ratios ranging from compressive to tensile fatigue loading. (Abstract shortened by UMI.)
机译:在挤出的颗粒增强的金属基质复合物中观察到了增强颗粒的优选排列。颗粒的这种优先排列会影响复合材料的机械性能。在本研究的第一部分中,研究了各向异性在碳化硅颗粒排列中对一定体积分数范围内挤出的2080铝基复合材料的拉伸和疲劳行为的影响。微观结构表征显示,增强颗粒平行于挤出轴方向优选排列,尽管随着增强体积分数的增加,排列程度降低。平行于挤出轴的杨氏模量和拉伸强度高于垂直于挤出轴的杨氏模量和拉伸强度。讨论了复合材料的拉伸和疲劳行为与增强颗粒排列中各向异性程度之间的关系。常规地,在数值分析中,对晶胞建模以模拟颗粒增强复合材料的变形行为。由于复合材料微观结构的过度简化,该方法无法获得准确的结果。因此,在本研究的第二部分中,使用二维和三维的真实微观结构进行了数值分析,以准确预测复合材料的性能。使用基于二维微结构的有限元方法对颗粒取向引起的应力-应变行为变化进行了建模,与实验结果吻合良好。连续切片过程用于重建复合材料的三维微观结构。基于三维微观结构的模型预测的复合材料的杨氏模量和整体应力应变行为与实验结果非常相关。结果发现,基于三维微观结构的模型比三维晶胞模型能够更准确地预测复合材料的单轴拉伸行为。颗粒增强铝合金越来越成为替代常规铝合金的首选材料。这些材料的疲劳裂纹扩展行为是大多数应用程序中的重要特性之一。迄今为止,尚未完全理解疲劳裂纹的扩展机理。造成这种情况的主要原因是缺乏从压缩载荷到拉伸疲劳载荷的载荷比数据。 (摘要由UMI缩短。)

著录项

  • 作者

    Vasudevanpillai, Ganesh V.;

  • 作者单位

    Arizona State University.;

  • 授予单位 Arizona State University.;
  • 学科 Engineering Materials Science.
  • 学位 Ph.D.
  • 年度 2004
  • 页码 145 p.
  • 总页数 145
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类 工程材料学;
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号