首页> 外文学位 >Laboratory investigations of the mechanisms of groundwater seepage erosion and piping in cohesive soils.
【24h】

Laboratory investigations of the mechanisms of groundwater seepage erosion and piping in cohesive soils.

机译:对粘性土壤中地下水渗漏侵蚀和管道形成机理的实验室研究。

获取原文
获取原文并翻译 | 示例

摘要

Seepage and soil piping are two mechanisms that can cause streambank erosion and failure. Groundwater seepage can cause erosion either by undercutting or "pop-out" failure. The objective of the seepage study was to utilize a constant-head soil box packed with sandy loam soils at prescribed bulk densities (1.30-1.70 Mg m-3) and an outflow face at 90°. Bulk density controlled the mechanism of seepage erosion/failure. For both soils, tension failures occurred at densities less than 1.60 Mg m-3 and undercutting was observed for densities 1.60 Mg m-3 or greater. Data from experiments was used to calibrate SEEP/W to determine pore-water pressures. SLOPE/W utilized the pore-water pressures to determine stability. SLOPE/W only incorporates pore-water pressure effects in factor of safety calculations; therefore, the model was unsuccessful at predicting a failure. Seepage gradient forces may play a more prominent role in streambank and hillslope instability, and this mechanism should be incorporated into stability models. In addition, soil pipe experiments were conducted and flow and internal erosion data were derived for two soils packed at uniform bulk densities but different initial moisture contents. Soils included were clay loam (Dry Creek) and sandy loam (Cow Creek). Initial gravimetric moisture contents (MC) were 10, 12 and 14% for Dry Creek soil and 8, 12, and 14% for Cow Creek soil. A 1-cm diameter rod created the horizontal pipe. A constant head was maintained; flow rates and sediment concentrations were measured from the pipe outlet. Submerged jet erosion tests (JETs) derived erodibility parameters. Flow rates from the box experiments calibrated the deterministic model. The influence of the initial MC of the packed soil was apparent with some pipes (8% MC) expanding so fast that limited data was collected. The deterministic model estimated equivalent flow rates, but had difficulty matching observed sediment concentrations when pipes rapidly expanded by internal erosion. The submerged JETs predicted similar erodibility coefficients compared to the deterministic model for the more erodible cases (8 and 12% MC), but not for the less erodible cases (14% MC).
机译:渗流和土壤管道是导致河岸侵蚀和破坏的两种机制。地下水的渗入会通过咬边或“弹跳”破坏而引起侵蚀。渗流研究的目的是利用装满规定堆积密度(1.30-1.70 Mg m-3)的砂壤土的恒压土壤箱和90°的出水面。堆积密度控制了渗流侵蚀/破坏的机理。对于两种土壤,在密度小于1.60 Mg m-3时都会发生拉伸破坏,而在密度为1.60 Mg m-3或更高时会发生咬入。来自实验的数据用于校准SEEP / W,以确定孔隙水压力。 SLOPE / W利用孔隙水压力确定稳定性。 SLOPE / W仅在安全性计算中考虑了孔隙水压力效应。因此,该模型无法成功预测故障。渗流梯度力可能在河岸和山坡失稳中起更主要的作用,应将此机制纳入稳定性模型。此外,进行了土壤管实验,得出了堆积密度相同但初始含水量不同的两种土壤的流量和内部侵蚀数据。包括的土壤是粘土壤土(干溪)和沙质壤土(牛溪)。对于Dry Creek土壤,初始重量水分含量(MC)为10%,12%和14%,对于Cow Creek土壤为8%,12%和14%。一根直径为1厘米的杆创建了水平管。保持恒定的头部;从管道出口测量流速和沉积物浓度。淹没式水蚀试验(JET)得出了可蚀性参数。箱式实验的流量校准了确定性模型。装满土壤的初始MC的影响很明显,一些管道(8%MC)膨胀得如此之快以至于收集到的数据有限。确定性模型估算了当量流速,但是当管道由于内部侵蚀而迅速膨胀时,很难匹配观察到的沉积物浓度。与确定性模型相比,对于更易腐蚀的情况(8%和12%MC),与确定性模型相比,淹没式JET预测的相似的腐蚀系数,但对于较不易腐蚀的情况(14%MC)则没有。

著录项

  • 作者

    Felice, Rachel Gayle.;

  • 作者单位

    Oklahoma State University.;

  • 授予单位 Oklahoma State University.;
  • 学科 Environmental engineering.
  • 学位 M.S.
  • 年度 2012
  • 页码 65 p.
  • 总页数 65
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号