首页> 外文学位 >Techniques to reduce off-resonance image artifacts in rapid MRI.
【24h】

Techniques to reduce off-resonance image artifacts in rapid MRI.

机译:减少快速MRI中失谐图像伪影的技术。

获取原文
获取原文并翻译 | 示例

摘要

Among modern medical imaging modalities, magnetic resonance imaging (MRI) is one of the slowest. Although restricted in part by natural properties of atomic nuclei, MRI scanning speed is limited by its inherent serial sampling paradigm and inefficiencies in the sampling trajectory, the path through frequency space along which the spectral data are acquired. Most MRI studies employ trajectories that under-utilize the scanner hardware and prolong the scan.;Fast trajectories such as spirals and echo planar patterns can reduce scan time several fold. Compared to other acceleration methods, rapid MRI trajectories more generally applicable and can be implemented without additional hardware or signal modeling assumptions. However, they are sensitive to the signal phase errors generated by off-resonance, the inevitable variation in resonance frequency across the imaging volume. Images they produce tend to contain corruptive artifacts which have mostly limited their usage to niche research applications. Yet they remain relevant to the future of MRI. With high field imaging comes the promise of finer resolutions and faster scans, which may not be realizable without fast trajectories.;This work introduces new techniques for robust off-resonance artifact reduction and correction. We present an improved outer volume suppression (OVS) sequence to suppress signal and allow imaging with a reduced field-of-view (rFOV). Our OVS design is tolerant of field inhomogeneity and has short duration, unlike other methods. The rFOV mitigates the image blurring artifacts characteristic of spiral trajectories. We derive a new solution to the Bloch equations with an interesting property that is utilized in the design.;We also present a new algorithm for automatic deblurring of images acquired with spiral trajectories. This is the first autofocus method for MRI that does not optimize a focus metric. Instead, it estimates the underlying off-resonance using signal physics and a piecewise linear processing framework. Evaluations using fine-resolution spiral imaging show that our method can outperform current automatic methods, and is comparable to non-automatic approaches wherein the off-resonance is known.;We also show how the automatic off-resonance correction algorithm can be modified to accommodate alternate trajectories. We investigate its application to reduce the geometric distortion artifacts caused by off-resonance in echo planar imaging. Initial tests show the reduction in distortion using our approach is similar to non-automatic methods.;Ironically, rapid trajectories may be the tortoise in the long race to improve MRI. Their immediate potential to shorten scans has kept them in the running, but they are encumbered by the need for robust mitigation of off-resonance artifacts. Using the proposed techniques, rapid trajectories may become the front-runner in more MRI protocols.
机译:在现代医学成像方式中,磁共振成像(MRI)是最慢的一种。尽管部分受原子核自然属性的限制,但MRI扫描速度受其固有的连续采样范式和采样轨迹的低效率以及沿频谱空间获取光谱数据的路径的限制。大多数MRI研究使用的轨迹未充分利用扫描仪硬件并延长了扫描时间;诸如螺旋和回波平面图案之类的快速轨迹可以将扫描时间缩短几倍。与其他加速方法相比,快速MRI轨迹更通用,可以在没有其他硬件或信号建模假设的情况下实现。但是,它们对由于偏共振而产生的信号相位误差很敏感,偏共振是整个成像空间中共振频率不可避免的变化。它们产生的图像往往包含破坏性伪像,这些伪像大多将其用途限制在利基研究应用程序中。但是它们仍然与MRI的未来相关。高场成像带来了更高的分辨率和更快的扫描的希望,而如果没有快速的轨迹,这将是无法实现的。这项工作引入了新技术,可以可靠地减少和校正非共振伪像。我们提出了一种改进的外部音量抑制(OVS)序列来抑制信号并允许以减小的视场(rFOV)进行成像。与其他方法不同,我们的OVS设计可以容忍电场不均匀并且持续时间短。 rFOV减轻了螺旋轨迹的图像模糊伪影。我们得出了具有有趣特性的Bloch方程的新解决方案,该解决方案在设计中得到了应用。我们还提出了一种新的算法,用于对通过螺旋轨迹获取的图像进行自动去模糊。这是用于MRI的第一种自动聚焦方法,该方法无法优化聚焦指标。相反,它使用信号物理学和分段线性处理框架来估计潜在的失谐。使用精细分辨率螺旋成像进行的评估表明,我们的方法可以胜过当前的自动方法,并且可以与已知非共振的非自动方法相媲美。;我们还展示了如何可以修改自动非共振校正算法以适应替代轨迹。我们调查其应用程序,以减少由回波平面成像中的失谐引起的几何失真伪影。初步测试表明,使用我们的方法可以减少失真,这与非自动方法类似。具有讽刺意味的是,从长远来看,快速运动轨迹可能是改善MRI的乌龟。它们缩短扫描的直接潜力使它们一直处于运行状态,但是它们需要强大的缓解非共振伪像的需求。使用提出的技术,快速轨迹可能会成为更多MRI协议中的领跑者。

著录项

  • 作者

    Smith, Travis B.;

  • 作者单位

    University of Southern California.;

  • 授予单位 University of Southern California.;
  • 学科 Electrical engineering.;Medical imaging.
  • 学位 Ph.D.
  • 年度 2012
  • 页码 125 p.
  • 总页数 125
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号