首页> 外文学位 >Cellular Fatty Acid Toxicity: Extrapolating Yeast Screens into Mammalian Models.
【24h】

Cellular Fatty Acid Toxicity: Extrapolating Yeast Screens into Mammalian Models.

机译:细胞脂肪酸毒性:将酵母菌筛选推断为哺乳动物模型。

获取原文
获取原文并翻译 | 示例

摘要

Fatty acid deposition in non-adipose tissue leads to a cellular dysfunction known as lipotoxicity. Neutral lipid synthesis is known to protect against lipotoxicity but many additional pathways are likely to be integral in this process. In order to identify pathways protective against lipid induced cell death, we performed a genome-wide unsaturated fatty acid (UFA) sensitivity screen in yeast. Of the ∼5,500 gene mutants tested, we identified 156 which resulted in sensitivity to growth on media containing palmitoleate. These genes identified many cellular processes, including vesicular trafficking, lipid metabolism and vacuolar protein sorting. Deletion of three members of the GET complex, a complex essential for tail anchored protein insertion into the ER, caused vulnerability to fatty acids. We went on to assess the role of GET3 in cellular lipid metabolism and found that ablation of GET3 results in a defect in vacuolar hydrolysis and a reduction in lipid droplet number; pathways which we hypothesize to be integrally related. Furthermore, a major goal of this study was to find mammalian genes playing an integral role in pathways of lipoprotection. Of the 156 gene deletions found to confer fatty acid sensitivity in yeast, 68 have been conserved in mammals. We demonstrate that two of these mammalian orthologs, ARV1and ASNA1, are vulnerable to fatty acid treatment upon knockdown in the MIN6 pancreatic beta-cell line. These mammalian genes, which were identified through the fatty acid sensitivity screen in yeast, are involved in lipid induced cellular dysfunction in pancreatic beta-cells and, in the case of ARV1, hepatocytes. Therefore, these genes likely play a role in the progression of the lipotoxic diseases; type 2 diabetes and nonalcoholic fatty liver disease.
机译:脂肪酸在非脂肪组织中的沉积会导致细胞功能障碍,称为脂毒性。已知中性脂质合成可防止脂质毒性,但是许多额外的途径可能在此过程中必不可少。为了确定对脂质诱导的细胞死亡具有保护作用的途径,我们在酵母中进行了全基因组不饱和脂肪酸(UFA)敏感性筛选。在测试的约5500个基因突变体中,我们确定了156个对含有棕榈油酸酯的培养基的生长敏感。这些基因鉴定出许多细胞过程,包括水泡运输,脂质代谢和液泡蛋白分选。 GET复合物(尾部锚定蛋白插入ER所必需的复合物)的三个成员的缺失导致了对脂肪酸的脆弱性。我们继续评估了GET3在细胞脂质代谢中的作用,发现GET3的切除导致液泡水解缺陷和脂质滴数减少。我们假设是完全相关的途径。此外,这项研究的主要目的是发现哺乳动物基因在脂保护途径中起着不可或缺的作用。已发现在酵母中赋予脂肪酸敏感性的156个基因缺失中,有68个在哺乳动物中已被保守。我们证明了这些哺乳动物的直系同源物中的两个,ARV1和ASNA1,在MIN6胰岛β细胞系中被击倒后,很容易受到脂肪酸治疗。这些哺乳动物基因是通过酵母中的脂肪酸敏感性筛选确定的,与脂质诱导的胰岛β细胞的细胞功能障碍有关,在ARV1的情况下与肝细胞有关。因此,这些基因可能在脂毒性疾病的进展中起作用。 2型糖尿病和非酒精性脂肪肝疾病。

著录项

  • 作者

    Ruggles, Kelly.;

  • 作者单位

    Columbia University.;

  • 授予单位 Columbia University.;
  • 学科 Nutrition.;Cellular biology.
  • 学位 Ph.D.
  • 年度 2012
  • 页码 330 p.
  • 总页数 330
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号