首页> 外文学位 >Characterization of the anti-morphine action of CC12: An epoxygenase theory of morphine antinociception.
【24h】

Characterization of the anti-morphine action of CC12: An epoxygenase theory of morphine antinociception.

机译:CC12抗吗啡作用的特征:吗啡抗伤害感受的环氧合酶理论。

获取原文
获取原文并翻译 | 示例

摘要

To study the significance of cytochrome P450-mediated arachidonic acid metabolism in opioid action, we generated a mouse (brain-Cpr -null) with brain neuron-specific deletion of the cytochrome P450 reductase (Cpr) gene. Deletion of Cpr was accomplished via crossing Cprlox/lox mice with CamKIIalpha-Cre expressing mice. CPR is necessary for all microsomal P450 function. Brain-Cpr -null mice showed loss of neuronal CPR, reduced brain P450 activity, and highly attenuated antinociception after morphine administration, as compared with wild-type controls.No differences in CPR expression were noted in the rostral ventromedial medulla (RVM) between wild-type and null mice. As expected, Cre expression in null mice paralleled the loss of CPR found in these mice. Expression of Cre was found in the cerebral cortex, hippocampus and PAG, but not in the RVM, of brain-Cpr-null mice. No Cre expression was found in wild-type control littermates. No genotype-associated differences were observed in brain morphine levels or brain opioid receptor properties. Additionally, no differences in baseline nociceptive responding, or in baseline responding to milder thermal or mechanical stimuli, were evident between null and WT mice. These data indicate that the deficit in morphine responding is not due to hyperalgesia in the null mice. Complementary studies in mice and rats confirmed that morphine antinociception was blocked by several epoxygenase and P450 inhibitors. Additionally, the selective epoxygenase inhibitor MS-PPOH demonstrated dose-dependent (3--300 nmol, icv) and long-lasting (up to 4 hours) inhibition of morphine antinociception. Furthermore, although the P450 isoform involved in morphine antinociceptive signaling is not currently known, the epoxygenase inhibitor MS-PPOH may be a useful tool in identifying the morphine-relevant P450 due to its long-lasting anti-morphine actions.Additional experiments tested other components of the epoxygenase theory. Several, but not all, EET regioisomers produced antinociception on both hot plate and mechanical tests of nociception in rats following intra-PAG or intra-RVM administration. However, this antinociception was not evident on the tail flick test, indicating that the EETs may not be the morphine analgesic mediator, or that other metabolites may be important for morphine antinociception on the tail flick test. Additional pilot studies tested the role for EETs in morphine antinociception by using an inhibitor of the main EET-metabolizing enzyme, soluble epoxide hydrolase (sEH). Icv administration with an inhibitor of sEH failed to enhance morphine antinociception.Systemic morphine produces antinociception by actions within the PAG, RVM, and dorsal horn of the spinal cord. To identify the CNS sites in which the morphine-P450 interaction occurs, the effects of intracerebral (ic) microinjections of the P450 inhibitor CC12 were determined on morphine antinociception in rats. CC12 inhibited morphine antinociception when both drugs were injected into the rostral ventromedial medulla (RVM), but not following co-injections into the periaqueductal gray (PAG) or into the spinal subarachnoid space. Additionally, intra-RVM CC12 pretreatment nearly completely blocked the effects of morphine following intracerebroventricular (icv) administration. These data show that P450 activity within the RVM is essential for supraspinal morphine antinociception. Although morphine is thought to act in both the PAG and RVM by presynaptic inhibition of inhibitory GABAergic transmission, the present findings indicate that the mechanism of morphine action differs between these two brainstem areas. Immunohistochemical analyses in brain-Cpr-null mice identified a select group of neurons within the PAG which lacked CPR. These neurons were proposed to be important for the morphine-resistant phenotype seen in these animals. However, pharmacological data in rats suggest that the RVM, and not the PAG, contains the morphine-relevant P450. A model showing a CPR-containing cell body located within the PAG with RVM-projecting, P450-containing terminals, is proposed and accounts for the disparate findings mentioned above. Further characterization of morphine-P450 interactions within the RVM circuits will enhance the understanding of the biochemistry of pain relief.Although the current thesis provides strong evidence in support of an epoxygenase theory of morphine analgesia, the epoxygenase (EETs and/or DHETs) or non-epoxygenase (HETEs, hepoxilins) AA metabolites which mediate morphine analgesia is unclear. While elucidation of the importance of a P450 epoxygenase enzyme in morphine analgesia creates a new avenue for the study of pain-relieving drugs, the scope and significance of this finding remains unknown. Further studies on the morphine-P450 antinociceptive interaction may help to discover new targets for analgesic drug development. (Abstract shortened by UMI.)
机译:为了研究细胞色素P450介导的花生四烯酸代谢在阿片样物质作用中的重要性,我们产生了具有脑神经元特异性缺失的细胞色素P450还原酶(Cpr)基因的小鼠(brain-Cpr -null)。 Cpr的删除是通过将Cprlox / lox小鼠与表达CamKIIalpha-Cre的小鼠杂交来完成的。心肺复苏术是所有微粒体P450功能所必需的。与野生型对照组相比,吗啡给药后无脑CPR的小鼠表现出神经元CPR的丧失,脑P450活性降低和抗伤害性大大降低。野生型之间的延髓腹侧延髓(RVM)的CPR表达没有差异型和空小鼠。如预期的那样,空小鼠中的Cre表达与这些小鼠中发现的CPR丧失平行。 Cre的表达在脑Cpr无小鼠的大脑皮层,海马和PAG中发现,但在RVM中未发现。在野生型对照同窝幼仔中未发现Cre表达。在脑吗啡水平或脑阿片受体特性方面未观察到与基因型相关的差异。另外,在空小鼠和WT小鼠之间,基线伤害感受响应或对轻度热或机械刺激的基线响应没有差异。这些数据表明吗啡反应的缺陷不是归因于空小鼠的痛觉过敏。在小鼠和大鼠中进行的补充研究证实,吗啡的抗伤害感受作用被几种环氧合酶和P450抑制剂阻断。此外,选择性环氧合酶抑制剂MS-PPOH表现出剂量依赖性(3--300 nmol,icv)和对吗啡抗伤害感受的持久(长达4小时)抑制作用。此外,尽管目前尚不了解参与吗啡抗伤害感受信号转导的P450异构体,但环氧生酶抑制剂MS-PPOH由于其持久的抗吗啡作用而可能是鉴定与吗啡相关的P450的有用工具。其他实验测试了其他成分环氧合酶理论。在PAG内或RVM内给药后,几种但不是全部EET区域异构体在大鼠的热板和痛觉机械测试中均产生了抗伤害感受。但是,这种抗伤害感受在甩尾试验中并不明显,这表明EET可能不是吗啡镇痛剂,或者其他代谢产物对吗啡镇痛的重要性不明显。其他先导研究通过使用主要EET代谢酶可溶性环氧化物水解酶(sEH)的抑制剂测试了EET在吗啡镇痛中的作用。静脉注射sEH抑制剂未能增强吗啡的抗伤害感受,全身性吗啡通过PAG,RVM和脊髓背角内的作用产生抗伤害感受。为了鉴定其中发生吗啡-P450相互作用的中枢神经系统部位,确定了脑内(ic)注射P450抑制剂CC12对大鼠吗啡抗伤害感受的影响。当两种药物均注射入延髓腹侧延髓(RVM)中时,CC12抑制吗啡镇痛作用,但同时注射入导水管周围灰色(PAG)或脊髓蛛网膜下腔中后,CC12不会抑制吗啡镇痛作用。此外,RVM内CC12预处理几乎完全阻断了脑室内(icv)给药后吗啡的作用。这些数据表明RVM内的P450活性对于脊髓上吗啡抗伤害感受至关重要。尽管吗啡被认为通过突触前抑制抑制性GABA能传递而在PAG和RVM中起作用,但目前的发现表明,这两个脑干区域的吗啡作用机理不同。对脑Cpr无小鼠的免疫组织化学分析确定了PAG中缺乏CPR的一组神经元。提出这些神经元对于在这些动物中看到的对吗啡耐药的表型很重要。然而,大鼠的药理数据表明RVM而非PAG含有与吗啡有关的P450。提出了一个模型,该模型显示了位于具有RVM投影且包含P450的末端的PAG内的包含CPR的细胞体,并解释了上述不同的发现。 RVM回路中吗啡-P450相互作用的进一步表征将增强对疼痛缓解的生物化学的理解。尽管当前的研究提供了强有力的证据来支持吗啡镇痛的环氧酶理论,环氧酶(EET和/或DHET)或非环氧酶。 -环氧酶(HETEs,hepoxilins)介导吗啡镇痛的AA代谢物尚不清楚。尽管阐明了P450环氧酶在吗啡镇痛中的重要性为缓解疼痛药物的研究开辟了一条新途径,但这一发现的范围和意义仍然未知。对吗啡-P450抗伤害感受性相互作用的进一步研究可能有助于发现镇痛药物开发的新目标。 (摘要由UMI缩短。)

著录项

  • 作者

    Conroy, Jennie L.;

  • 作者单位

    Albany Medical College of Union University.;

  • 授予单位 Albany Medical College of Union University.;
  • 学科 Biology Neuroscience.Health Sciences Pharmacology.
  • 学位 Ph.D.
  • 年度 2010
  • 页码 157 p.
  • 总页数 157
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号