首页> 外文学位 >Design and development of in situ albumin binding surfaces: Evaluation in the paradigm of blood-biomaterial compatibility.
【24h】

Design and development of in situ albumin binding surfaces: Evaluation in the paradigm of blood-biomaterial compatibility.

机译:原位白蛋白结合表面的设计和开发:血液-生物材料相容性范式中的评估。

获取原文
获取原文并翻译 | 示例

摘要

Biocompatibility of natural and synthetic implant materials as blood contacting devices is crucial to host response. Implantation often raises complications from thrombotic and thromboembolic events. The aspect of hemocompatibility concentrates on minimizing thrombotic and thromboembolic response of foreign materials in contact with blood. The initial layer of surface adsorbed proteins plays a pivotal role in the adhesion and subsequent aggregation of platelets and in the activation of the coagulation cascade. Therefore, an improved surface architecture is required to gain control over the initial protein adsorption events, thereby extending the sustainability of an implantable device.;In general, surfaces with an ability to bind endogenous albumin has been known to minimize platelet adhesion and activation. While the scope of applicability is broad, in this study silicon-based surfaces were selected as model surfaces. A densely packed uniformly distributed silane monolayer was achieved on silicon based surfaces with -- NH2 functionality, upon a careful optimization of hydroxylation and the subsequent silanization with 2 vol% of 3-Aminopropyltriethoxy Silane (APTES).;Two linear peptides with affinity for albumin over other serum proteins were selected to create affinity surfaces. Silanized surfaces covalently immobilized with albumin binding peptides were evaluated in the paradigm of blood-biomaterial compatibility. When compared to control surfaces, albumin binding surfaces prepared in this study: (a) possessed 2.0 to 3.0 mug/cm2 of surface bound albumin with minimal surface adsorbed fibrinogen, (b) depicted low levels of adhered platelets and supported a rounded platelet morphology, (c) displayed delayed clotting, (d) showed reduced platelet adhesion and activation under shearing, and (f) exhibited faster adsorption kinetics.;Conclusively, in-situ albumin binding surfaces selectively and specifically interacted with albumin without being severely displaced by other serum proteins, thereby substantiating surface passivation.
机译:天然和合成植入材料作为血液接触装置的生物相容性对于宿主反应至关重要。植入常常引起血栓形成和血栓栓塞事件的并发症。血液相容性方面集中在最小化与血液接触的异物的血栓形成和血栓栓塞反应。表面吸附蛋白的初始层在血小板的粘附和随后的聚集以及凝血级联的激活中起关键作用。因此,需要改进的表面结构来控制初始蛋白质吸附事件,从而扩展可植入装置的可持续性。总的来说,已知具有结合内源白蛋白能力的表面可使血小板粘附和活化最小化。尽管适用范围很广,但在本研究中,选择了基于硅的表面作为模型表面。经过精心优化的羟基化和随后用2%体积的3-氨基丙基三乙氧基硅烷(APTES)硅烷化,在具有NH2官能度的硅基表面上获得了紧密堆积的均匀分布的硅烷单层。;两个对白蛋白具有亲和力的线性肽选择超过其他血清蛋白以产生亲和力表面。共价结合白蛋白结合肽的硅烷化表面在血液-生物材料相容性范式中进行了评估。与对照表面相比,本研究中制备的白蛋白结合表面:(a)具有2.0至3.0杯/ cm2的表面结合白蛋白,表面吸附的纤维蛋白原最少,(b)血小板粘附水平低,并支持圆形的血小板形态, (c)显示延迟的凝结,(d)显示剪切作用下血小板粘附和活化降低,(f)显示更快的吸附动力学。;最终,原位白蛋白结合表面选择性地和特异性地与白蛋白相互作用,而不会被其他血清严重置换蛋白质,从而证实表面钝化。

著录项

  • 作者

    Guha Thakurta, Sanjukta.;

  • 作者单位

    The University of Nebraska - Lincoln.;

  • 授予单位 The University of Nebraska - Lincoln.;
  • 学科 Engineering Biomedical.;Engineering Chemical.;Engineering Materials Science.
  • 学位 Ph.D.
  • 年度 2010
  • 页码 323 p.
  • 总页数 323
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号