首页> 外文学位 >Molecular dynamics simulation of biomembranes in aqueous solution.
【24h】

Molecular dynamics simulation of biomembranes in aqueous solution.

机译:水溶液中生物膜的分子动力学模拟。

获取原文
获取原文并翻译 | 示例

摘要

In recent years, the developments in classical molecular dynamics simulation have allowed for an atomistic depiction of mesoscopic biological systems. With the awareness of such developments, the natural strive of the scientific community has been to increase the size of such simulated systems [70]. Nonetheless, the subtleties in the properties of biomembranes require an unusually thoughtful approach [70, 203]. In this work, a hierarchical approach is taken, with respect to system complexity, in the classical molecular dynamics simulation of biomembrane systems in aqueous solution.; A progression of simulation studies is presented that begins with the analysis of the interfacial properties of neat bilayers composed of zwitterionic (phosphatidylcholine) lipids in both pure water and in electrolyte. We move on to study mixed bilayers containing zwitterionic (phosphatidylcholine) and acidic (phosphatidylserine) lipids with counterions immersed in electrolyte. Yet another layer of complexity is added to the problem by studying hydrated bilayers containing phosphatidylcholine lipids and cholesterol. Finally, we address the semipermeable nature of biomembranes by studying two membrane-channel systems. We start with a simple model membrane-channel consisting of a six-helix alamethicin bundle embedded in a hydrated phosphatidylcholine bilayer. The knowledge gained from this study is then carried over to the simulation of a large membrane-embedded prokaryotic ClC Cl-/H + antiporter, utilizing a free-energetic analysis to reveal the role of protons in the Cl- transport mechanism.; Throughout the progression, methods are developed and used in the analysis of interfacial aqueous solution structure, ion-membrane binding, lipid structural properties, inter-lipid hydrogen bonded complexation, and electrostatics at the membrane interface. The developments reveal the layered nature of water near the rugged, molecularscale aqueous solution/membrane interface and its electrostatic consequences, a rationalization for experimental observations pertaining to ion-membrane binding events, the structural changes in lipids that give rise to inter-lipid complexation, and explanations for inter-lipid condensed complex stoichiometries. In the case of ion channels, developments are made in the appropriate selection of periodic boundary conditions for the simulation, and in the analysis of ion channel occupancy [1].
机译:近年来,经典分子动力学模拟的发展已允许对介观生物系统进行原子描述。随着这种发展的认识,科学界的自然努力就是增加这种模拟系统的规模[70]。然而,生物膜特性的微妙需要一种非常规的方法[70,203]。在这项工作中,在水溶液中生物膜系统的经典分子动力学模拟中,采用了关于系统复杂性的分层方法。模拟研究的进展从分析纯净水和电解质中由两性离子(磷脂酰胆碱)脂质组成的纯净双层的界面特性开始。我们继续研究包含两性离子(磷脂酰胆碱)和酸性(磷脂酰丝氨酸)脂质以及浸入电解质的抗衡离子的混合双层。通过研究含有磷脂酰胆碱脂质和胆固醇的水合双层,又增加了另一层复杂性。最后,我们通过研究两个膜通道系统来解决生物膜的半透性问题。我们从一个简单的模型膜通道开始,该膜通道由嵌入水合磷脂酰胆碱双层膜中的六螺旋芦荟素束组成。然后,利用自由能分析揭示质子在Cl转运机理中的作用,将从这项研究中获得的知识继续用于模拟大型膜嵌入的ClC Cl- / H +反转运蛋白。在整个开发过程中,人们开发了各种方法并将其用于分析界面水溶液结构,离子膜结合,脂质结构特性,脂质间氢键络合以及膜界面的静电。事态发展揭示了在崎,的分子级水溶液/膜界面附近的水的层状性质及其静电后果,是有关离子膜结合事件的实验观察的合理化,导致脂质间络合的脂质结构变化,并解释了脂质间稠合的复杂化学计量。在离子通道的情况下,在适当选择周期性边界条件进行仿真和分析离子通道占有率方面取得了进展[1]。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号