首页> 外文学位 >Analysis and Simulation of Partial Differential Equations in Mathematical Biology: Applications to Bacterial Biofilms and Fisher's Equation.
【24h】

Analysis and Simulation of Partial Differential Equations in Mathematical Biology: Applications to Bacterial Biofilms and Fisher's Equation.

机译:数学生物学中的偏微分方程的分析和模拟:在细菌生物膜和Fisher方程中的应用。

获取原文
获取原文并翻译 | 示例

摘要

In this dissertation, we investigate two important problems in mathematical biology that are best modeled using partial differential equations. We first consider the question of how surface-adherent bacterial biofilm communities respond in flowing systems, simulating the interaction and separation process using the immersed boundary method. We use the incompressible viscous Navier-Stokes (N-S) equations to describe the motion of the flowing fluid. In these simulations, we can assign different density and viscosity values to the biofilm than those of the surrounding fluid. The simulation also includes breakable springs connecting the particles in the biofilm. This allows the inclusion of erosion and detachment in the simulation. We discretize the fluid equations using finite differences and use a multigrid method to solve the resulting equations at each time step. The use of multigrid is necessary because of the dramatically different densities and viscosities between the biofilm and the surrounding fluid. We investigate and simulate the model in both two and three dimensions.;We also consider the spread of favorable genes in a population as described by the time varying coefficient Fisher's equation. We construct analytical solutions by using the Painleve property for partial differential equations as defined by Weiss in 1983. We use this technique to find solutions to Fisher's equation with time-dependent coefficients for both diffusion and nonlinear terms. Finally, we compute specific solutions to illustrate their behaviors.
机译:在本文中,我们研究了数学生物学中的两个重要问题,这些问题最好用偏微分方程建模。我们首先考虑表面粘附的细菌生物膜群落在流动系统中如何响应的问题,使用浸入边界方法模拟相互作用和分离过程。我们使用不可压缩的粘性Navier-Stokes(N-S)方程来描述流动流体的运动。在这些模拟中,我们可以为生物膜分配与周围流体不同的密度和粘度值。模拟还包括连接生物膜中颗粒的易碎弹簧。这允许在模拟中包括腐蚀和脱落。我们使用有限差分将流体方程离散化,并使用多重网格方法在每个时间步求解结果方程。由于生物膜和周围流体之间的密度和粘度差异很大,因此必须使用多重网格。我们在二维和三维两个维度上研究和仿真该模型。我们还考虑了时变系数Fisher方程所描述的有利基因在种群中的传播。我们通过使用Wein在1983年定义的偏微分方程的Painleve属性来构造解析解。我们使用该技术找到具有扩散和非线性项的时间相关系数的Fisher方程的解。最后,我们计算特定的解决方案以说明其行为。

著录项

  • 作者

    Hammond, Jason F.;

  • 作者单位

    University of Colorado at Boulder.;

  • 授予单位 University of Colorado at Boulder.;
  • 学科 Applied Mathematics.;Biology Microbiology.;Biophysics Biomechanics.
  • 学位 Ph.D.
  • 年度 2012
  • 页码 141 p.
  • 总页数 141
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号