首页> 外文学位 >Thermal management of the copper-chlorine cycle for hydrogen production: Analytical and experimental investigation of heat recovery from molten salt.
【24h】

Thermal management of the copper-chlorine cycle for hydrogen production: Analytical and experimental investigation of heat recovery from molten salt.

机译:用于制氢的铜-氯循环的热管理:从熔融盐中回收热量的分析和实验研究。

获取原文
获取原文并翻译 | 示例

摘要

Hydrogen is known as a clean energy carrier which has the potential to play a major role in addressing the climate change and global warming, and thermochemical water splitting via the copper-chlorine cycle is a promising method of hydrogen production. In this research, thermal management of the copper-chlorine cycle for hydrogen production is investigated by performing analytical and experimental analyses of selected heat recovery options. First, the heat requirement of the copper-chlorine cycle is estimated. The pinch analysis is used to determine the maximum recoverable heat within the cycle, and where in the cycle the recovered heat can be used efficiently. It is shown that a major part of the potential heat recovery can be achieved by cooling and solidifying molten copper(I) chloride exiting one step in the cycle: the oxygen reactor. Heat transfer from molten CuCl can be carried out through direct contact or indirect contact methods. Predictive analytical models are developed to analyze a direct contact heat recovery process (i.e. a spray column) and an indirect contact heat recovery process (i.e. a double-pipe heat exchanger).;Characteristics of a spray column, in which recovered heat from molten CuCl is used to produce superheated steam, are presented. Decreasing the droplet size may increase the heat transfer rate from the droplet, and hence decreases the required height of the heat exchanger. For a droplet of 1 mm, the height of the heat exchanger is predicted to be about 7 m. The effect of hydrogen production on the heat exchanger diameter was also shown. For a hydrogen production rate of 1000 kg/day, the diameter of the heat exchanger is about 3 m for a droplet size of 1 mm and 2.2 m for a droplet size of 2 mm.;The results for axial growth of the solid layer and variations of the coolant temperature and wall temperature of a double-pipe heat exchanger are also presented. It is shown that reducing the inner tube diameter will increase the heat exchanger length and increase the outlet temperature of air significantly. It is shown that the air temperature increases to 190°C in a heat exchanger with a length of 15 cm and inner tube radius of 10 cm. The length of a heat exchanger with the inner tube radius of 12 cm is predicted to be about 53 cm. The outlet temperature of air is about 380°C in this case. The length of a heat exchanger with an inner tube diameter of 24 cm is predicted to be about 53 cm and 91 cm for coolant flow rates of 3 g/s and 4 g/s, respectively. Increasing the mass flow rate of air will increase the total heat flux from the molten salt by increasing the length of the heat exchanger. Experimental studies are performed to validate the proposed methods and to further investigate their feasibility. The hazards involving copper(I) chloride are also investigated, as well as corresponding hazard reduction options. Using the reactant Cu 2OCl2 in the oxygen production step to absorb CuCl vapor is the most preferable option compared to the alternatives, which include absorbing CuCl vapor with water or CuCl2 and building additional structures inside the oxygen production reactor.
机译:氢是一种清洁的能源载体,在解决气候变化和全球变暖方面具有重要作用,而通过铜-氯循环进行热化学水分解是一种有前途的制氢方法。在这项研究中,通过对选定的热回收方案进行分析和实验分析,研究了用于生产氢气的铜-氯循环的热管理。首先,估算铜-氯循环的热量需求。收缩分析用于确定循环内的最大可回收热量,以及在循环中可以有效利用回收热量的位置。结果表明,通过冷却和固化从循环中一个步骤离开的熔融氯化铜(I):氧气反应器,可以实现大部分的潜在热量回收。来自熔融CuCl的热传递可以通过直接接触或间接接触方法进行。开发了预测分析模型来分析直接接触热回收过程(即喷雾塔)和间接接触热回收过程(即双管热交换器)。喷雾塔的特征,其中从熔融的CuCl中回收热量介绍了用于产生过热蒸汽的方法。减小液滴尺寸可增加来自液滴的传热速率,因此减小了热交换器的所需高度。对于1 mm的液滴,预计热交换器的高度约为7 m。还显示了氢气产生对热交换器直径的影响。对于1000 kg / day的制氢速率,对于1 mm的液滴尺寸,热交换器的直径约为3 m,对于2 mm的液滴尺寸,热交换器的直径为2.2 m。还介绍了双管换热器的冷却液温度和壁温的变化。结果表明,减小内管直径将增加热交换器的长度并显着提高空气的出口温度。结果表明,在长度为15 cm,内管半径为10 cm的热交换器中,空气温度升高到190°C。内管半径为12 cm的热交换器的长度预计约为53 cm。在这种情况下,空气的出口温度约为380°C。对于3 g / s和4 g / s的冷却剂流量,内管直径为24 cm的热交换器的长度预计分别约为53 cm和91 cm。空气质量流量的增加将通过增加热交换器的长度而增加来自熔融盐的总热通量。进行实验研究以验证所提出的方法并进一步研究其可行性。还研究了涉及氯化铜(I)的危害,以及相应的减少危害的方法。与替代方案相比,在制氧步骤中使用反应物Cu 2OCl2吸收CuCl蒸气是最可取的选择,包括用水或CuCl2吸收CuCl蒸气并在制氧反应器内建立其他结构。

著录项

  • 作者

    Ghandehariun, Samane.;

  • 作者单位

    University of Ontario Institute of Technology (Canada).;

  • 授予单位 University of Ontario Institute of Technology (Canada).;
  • 学科 Engineering Mechanical.
  • 学位 Ph.D.
  • 年度 2012
  • 页码 172 p.
  • 总页数 172
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号