首页> 外文学位 >Plastic solar cell interface and morphological characterization.
【24h】

Plastic solar cell interface and morphological characterization.

机译:塑料太阳能电池的界面和形态表征。

获取原文
获取原文并翻译 | 示例

摘要

Plastic solar cell research has become an intense field of study considering these devices may be lightweight, flexible and reduce the cost of photovoltaic devices. The active layer of plastic solar cells are a combination of two organic components which blend to form an internal morphology. Due to the poor electrical transport properties of the organic components it is important to understand how the morphology forms in order to engineer these materials for increased efficiency. The focus of this thesis is a detailed study of the interfaces between the plastic solar cell layers and the morphology of the active layer.;The system studied in detail is a blend of P3HT and PCBM that acts as the primary absorber, which is the electron donor, and the electron acceptor, respectively. The key morphological findings are, while thermal annealing increases the crystallinity parallel to the substrate, the morphology is largely unchanged following annealing. The deposition and mixing conditions of the bulk heterojunction from solution control the starting morphology. The spin coating speed, concentration, solvent type, and solution mixing time are all critical variables in the formation of the bulk heterojunction. In addition, including the terminals or inorganic layers in the analysis is critical because the inorganic surface properties influence the morphology.;Charge transfer in the device occurs at the material interfaces, and a highly resistive transparent conducting oxide layer limits device performance. It was discovered that the electron blocking layer between the transparent conducting oxide and the bulk heterojunction is compromised following annealing. The electron acceptor material can diffuse into this layer, a location which does not benefit device performance. Additionally, the back contact deposition is important since the organic material can be damaged by the thermal evaporation of Aluminum, typically used for plastic solar cells. Depositing a thin thermal and momentum blocking layer of lithium fluoride prevents damage which ultimately leads to higher efficiencies.;Finally, new materials have been synthesized with better electronic properties and stability. Characterization of the polymer properties and how they assemble is important for high device performance. One new promising polymer, Polybenzo[1,2-b:4,5- b']dithiophene-4,7-dithien-2-yl-2,1,3-benzothiadiazole (PBnDT-DTBT), was characterized with PCBM and it was found that this polymer assembles similarly to previously studied polymers. The efficiency gained with this new polymer is obtained from an improvement in the materials electronic properties since the morphology closely resembles the P3HT:PCBM system.
机译:考虑到这些装置可能是轻量的,柔性的并降低了光伏装置的成本,因此塑料太阳能电池的研究已经成为研究的热点。塑料太阳能电池的活性层是两种有机成分的组合,混合后会形成内部形态。由于有机组分的电传输性能差,因此重要的是要了解形态的形成方式,以便对这些材料进行工程设计以提高效率。本文的重点是对塑料太阳能电池层与活性层的形态之间的界面进行详细研究。;详细研究的系统是充当主要吸收体的P3HT和PCBM的混合物,即电子。供体和电子受体。关键的形态学发现是,虽然热退火增加了平行于基板的结晶度,但是退火后形态基本没有变化。来自溶液的本体异质结的沉积和混合条件控制了起始形态。旋涂速度,浓度,溶剂类型和溶液混合时间都是形成本体异质结的关键变量。另外,在分析中包括末端或无机层是至关重要的,因为无机表面特性会影响形貌。器件中的电荷转移发生在材料界面,并且高电阻的透明导电氧化物层限制了器件的性能。发现在退火之后,透明导电氧化物和本体异质结之间的电子阻挡层受到损害。电子受体材料可以扩散到该层中,该位置不利于器件性能。另外,背接触沉积很重要,因为有机材料会因通常用于塑料太阳能电池的铝的热蒸发而受损。沉积一层薄薄​​的氟化锂热和动量阻挡层可防止损坏,最终导致更高的效率。最后,已经合成了具有更好电子性能和稳定性的新材料。聚合物性能及其组装方式的表征对于提高器件性能非常重要。一种新的有前途的聚合物,聚苯并[1,2-b:4,5-b']二噻吩-4,7-二噻吩-2-基-2,1,3-苯并噻二唑(PBnDT-DTBT),用PCBM进行了表征。发现该聚合物的组装与先前研究的聚合物相似。这种新型聚合物的效率得益于材料电子性能的改善,因为其形态非常类似于P3HT:PCBM系统。

著录项

  • 作者

    Guralnick, Brett W.;

  • 作者单位

    University of Delaware.;

  • 授予单位 University of Delaware.;
  • 学科 Alternative Energy.;Chemistry Polymer.;Engineering General.;Energy.
  • 学位 Ph.D.
  • 年度 2012
  • 页码 201 p.
  • 总页数 201
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号