首页> 外文学位 >Vertical cavity surface emitting laser based on gallium arsenide/air-gap distributed Bragg reflectors: From concept to working devices.
【24h】

Vertical cavity surface emitting laser based on gallium arsenide/air-gap distributed Bragg reflectors: From concept to working devices.

机译:基于砷化镓/气隙分布式布拉格反射器的垂直腔面发射激光器:从概念到工作装置。

获取原文
获取原文并翻译 | 示例

摘要

Vertical-cavity surface-emitting lasers (VCSELs) have created new opportunities in optoelectronics. However, VCSELs have so far been commercialized mainly for operation at 0.85 mum, despite their potential importance at other wavelengths, such as 1.3 mum and 1.55 mum. The limitations at these longer wavelengths come from material characteristics, such as a low contrast ratio in mirror materials, lower mirror reflectivity, and smaller optical gain for longer wavelength materials versus AlGaAs/GaAs quantum wells. A similar situation, insufficient gain relative to the cavity loss, existed in the past for shorter wavelength VCSELs before high quality epitaxial mirrors were developed. Semiconductor/air-gap Distributed Bragg Reflectors (DBRs) are attractive due to their high index contrast, which leads to a high reflectivity, wide stop band and low optical loss mirror with a small number of pairs. This concept is ready to be integrated into material systems other than AlGaAs/GaAs, which is studied in this work. Therefore, the impact of these DBRs can be extended into both visible and longer infrared wavelengths as a solution to the trade-off between DBR and active region materials. Air-gap DBRs can also be used as basic building blocks of micro-opto-electro-mechanical systems (MOEMS). The high Q microcavity formed by the air-gap DBRs also provide a good platform for microcavity physics study.; Air-gap DBRs are modeled using the transmission matrix formulae of the Maxwell equations. A comparison to existing DBR technology shows the great advantage and potential that the air-gap DBR possesses. Two types of air-gap are proposed and developed. The first one includes multiple GaAs/air pairs while the second one combines a single air-gap with metal and dielectric mirrors. New device structures and processing designs, especially an all-epitaxial lateral current and optical confinement technique, are carried out to incorporate air-gap DBRs into VCSEL structures. The first VCSEL based on a GaAs/air-gap DBR is successfully demonstrated. Low threshold continuous-wave lasing is achieved at room temperature. The device characteristics and air-gap DBR loss are analyzed based on experimental data.
机译:垂直腔面发射激光器(VCSEL)在光电领域创造了新的机遇。然而,迄今为止,尽管VCSEL在其他波长(例如1.3微米和1.55微米)上具有潜在的重要性,但它们仍主要用于0.85微米的商业化。与AlGaAs / GaAs量子阱相比,较长波长的限制来自材料特性,例如反射镜材料的对比度低,反射镜反射率低以及较长波长材料的光学增益较小。过去,在开发高质量的外延镜之前,对于较短波长的VCSEL,存在相对于腔损耗而言增益不足的类似情况。半导体/气隙分布式布拉格反射器(DBR)具有很高的折射率对比度,因此具有很高的反射率,这导致反射率高,阻带宽且光学损耗低,反射镜对数少。这个概念已经准备好集成到除AlGaAs / GaAs之外的材料系统中,本文将对此进行研究。因此,这些DBR的影响可以扩展到可见光波长和更长的红外波长,以解决DBR与有源区材料之间的折衷问题。气隙DBR也可以用作微光机电系统(MOEMS)的基本构件。气隙DBR形成的高Q微腔也为微腔物理研究提供了一个良好的平台。气隙DBR使用Maxwell方程的透射矩阵公式建模。与现有DBR技术的比较表明,气隙DBR具有巨大的优势和潜力。提出并开发了两种类型的气隙。第一个包括多个GaAs /空气对,而第二个则将单个气隙与金属和介电镜结合在一起。进行了新的器件结构和处理设计,尤其是全外延横向电流和光学限制技术,以将气隙DBR纳入VCSEL结构。成功地展示了基于GaAs /气隙DBR的第一个VCSEL。在室温下可实现低阈值连续波激射。根据实验数据分析了器件特性和气隙DBR损耗。

著录项

  • 作者

    Mo, Qingwei.;

  • 作者单位

    The University of Texas at Austin.;

  • 授予单位 The University of Texas at Austin.;
  • 学科 Engineering Electronics and Electrical.; Physics Optics.; Engineering Mechanical.
  • 学位 Ph.D.
  • 年度 2004
  • 页码 108 p.
  • 总页数 108
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类 无线电电子学、电信技术;光学;机械、仪表工业;
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号