首页> 外文学位 >Extending cut flower vase life by optimizing carbohydrate status: Preharvest conditions and preservative solution.
【24h】

Extending cut flower vase life by optimizing carbohydrate status: Preharvest conditions and preservative solution.

机译:通过优化碳水化合物状况来延长切花花瓶的寿命:收获前的条件和防腐剂。

获取原文
获取原文并翻译 | 示例

摘要

Carbohydrates have numerous roles in plants, serving as photosynthetic precursors required for growth, respirable substrates, osmoregulators, and sometimes, as osmoprotectants. Additionally, carbohydrates can act as cellular signals, controlling gene expression. In experiments with cut Helianthus , Lilium, and Rosa, we explored the effects of endogenous and exogenous carbohydrates on vase life and ethylene sensitivity.;Cut Rosa produced in South America are shipped for thousands of miles, frequently stored prior to shipment, and are held dry during shipping and storage. To see if protective carbohydrates would prevent or aid recovery from dehydration stress associated with dry shipping and storage, we conducted a number of pulsing and vase solution experiments with carbohydrates not currently used as pulsing and vase solutions. In cut Rosa 'Freedom', treatment with protective carbohydrates such as polyols, trehalose, and raffinose as vase solutions frequently resulted in a vase life similar to that of stems treated with sucrose, which averaged 14.6 and 15.7 days. The longest vase life for stems treated with protective carbohydrates was 13.9 and 15.5 days for one SplendaRTM and raffinose concentration, respectively. Vase life of water treated stems for these experiments was 13.2 and 13.9 days. In a subsequent experiment, no increase in vase life above the water control was observed for SplendaRTM or for either component of Splenda RTM, maltodextrin or sucralose, while sucrose yielded an increased vase life. The monosaccharides glucose and fructose yielded vase life as good as, or better than, vase life of stems treated with sucrose. Fructose increased vase life by as much as 4.4 days over sucrose; a commercial preservative solution increased vase life by 4.5 days over sucrose. When sucrose, glucose, and fructose were used as vase solutions, glucose and fructose contents of petals sampled on day 6 were the same in all cases, ranging from 31.83-34.96 and 67.03-69.86 mg˙g-1 dry weight for glucose and fructose, respectively. In contrast, glucose and fructose contents were decreased in water-treated roses (21.52 and 44.19 mg˙g-1 dry weight, respectively). In two experiments using carbohydrates as pulsing solutions prior to shipping, and in a third experiment using carbohydrates as holding solutions prior to storage, no increase in vase life above the water control was noted for any carbohydrate solution for Rosa 'Freedom', 'Judy', 'Polo', 'Verdi', or 'Versilia', although vase life differed by cultivar. Pulsing with solutions of abscisic acid, ascorbic acid, giberellic acid, indole-acetic acid or quercetin did not yield noticeable changes in vase life in cut Rosa 'Charlotte' or 'Freedom'; however, these pulses may have influenced carbohydrate content.;Some reports suggest Lilium species are not sensitive to ethylene, while other reports indicate otherwise. A previous report indicated that 'Stargazer' had increased sensitivity to ethylene after cold storage. We hypothesized that differences in sensitivity might be due to carbohydrate status, particularly starch levels, which can change as a result of cold exposure. To test this hypothesis, we pretreated Lilium of different genetic backgrounds with 1-methylcyclopropene (1-MCP) or silver thiosulfate (STS) before exposing them to a two-week cold storage period and subsequent treatment with 10 L˙L-1 ethylene. Storage decreased vase life of cut Lilium 'Princess Amalia', 'Red Alert', 'Renoir', and 'Stargazer' by 4.1, 5.5, 5.8, and 2.0 days, respectively. Storage decreased tepal starch content and leaf sucrose content, but increased tepal sucrose and fructose content. The magnitude of changes in carbohydrate content was dependent on cultivar. Vase life was positively correlated with starch in tepals and stems plus carpels, and with sucrose in leaves, but was negatively correlated with sucrose in tepals. Ethylene treatment reduced vase life in 'Red Alert' while pretreatment with either 1-MCP or STS increased vase life in both 'Red Alert' and 'Renoir'. Postharvest bud blast during vase life evaluation differed only by cultivar, ranging from 0 to 0.24 buds per stem for 'Red Alert' and 'Renoir', respectively.;Vase life of Lilium 'Vermeer' and 'Dazzle' was decreased by high temperature but not by low light during production. Differences between vase life of 'Vermeer' in year 1 and 'Dazzle' in years 2 and 3 between high and low production temperatures were 0.5, 3.0, and 1.2 days, respectively. However, the number of marketable stems (stems with three or more buds) was decreased by both low light and high temperature. Out of 20 stems per crate, low light decreased the number of marketable stems by 4.5 and 5.0 stems in years 2 and 3, respectively, while high temperature decreased marketable stems by 10.2 and 12.4 stems in years 2 and 3, respectively. Vase life of Helianthus 'Sunbright' was decreased by high production temperature in year one of the study (2.6 days) and was affected by a light and temperature interaction in year 2, where vase life tended to be decreased at high temperatures and shade promoted vase life at lower temperatures but decreased vase life at higher temperatures. The longest vase life for Helianthus grown during year 2 was 15.5 days for stems grown at 10°C night temperature in 30% shade, while the shortest vase life was 10.2 days for stems grown at 20°C in 30% shade. Neither temperature nor light affected vase life of Helianthus in year 3. Temperature and light affected carbohydrates sampled during years 2 and 3 in both Lilium and Helianthus , but carbohydrates had more of an effect on the vase life and quality of Lilium than of Helianthus. When buds from a Lilium stem were pooled for sampling, vase life did not correlate with tepal carbohydrate content, but was correlated with carbohydrates from leaves, stems, and non-tepal inflorescence tissue. In year 2, changes in vase life of Helianthus correlated with changes in different carbohydrates in leaf, stem, ray floret, and non-ray floret inflorescence tissues, but in year 3, vase life was only positively correlated with sucrose in ray florets.
机译:碳水化合物在植物中起着多种作用,充当生长所需的光合作用前体,可呼吸的底物,渗透调节剂,有时还用作渗透防护剂。另外,碳水化合物可以充当细胞信号,控制基因表达。在对切好的向日葵,百合和罗莎进行的实验中,我们探索了内源性和外源性碳水化合物对花瓶寿命和乙烯敏感性的影响。在南美生产的切罗莎被运输了数千英里,在运输前经常存放并保存在运输和存放期间要干燥。为了查看保护性碳水化合物是否可以防止或帮助摆脱与干燥运输和储存相关的脱水压力,我们对目前不用作脉冲和花瓶溶液的碳水化合物进行了许多脉冲和花瓶溶液实验。在切碎的Rosa'Freedom'中,用保护性碳水化合物(例如多元醇,海藻糖和棉子糖)作为花瓶溶液进行处理通常会导致花瓶寿命与用蔗糖处理的茎相似,平均寿命为14.6天和15.7天。对于SplendaRTM和棉子糖浓度,用保护性碳水化合物处理的茎的最长花瓶寿命分别为13.9天和15.5天。在这些实验中,水处理茎的花瓶寿命为13.2天和13.9天。在随后的实验中,对于SplendaRTM或Splenda RTM的任何一种成分,麦芽糊精或三氯蔗糖,花瓶寿命均未超过水控制,而蔗糖却增加了花瓶寿命。单糖葡萄糖和果糖产生的花瓶寿命与用蔗糖处理的茎的花瓶寿命相同或更好。果糖比蔗糖的花瓶寿命延长了4.4天。商业防腐剂溶液比蔗糖的花瓶寿命延长了4.5天。当使用蔗糖,葡萄糖和果糖作为花瓶溶液时,在第6天采样的花瓣中的葡萄糖和果糖含量在所有情况下都是相同的,葡萄糖和果糖的干重为31.83-34.96和67.03-69.86 mg·g-1。 , 分别。相反,在水处理的玫瑰中葡萄糖和果糖的含量降低(分别为21.52和44.19mg·g-1干重)。在两个使用碳水化合物作为运输前的脉动溶液的实验中,以及在第三个使用碳水化合物作为存储前的贮液的实验中,Rosa'Freedom','Judy'的任何碳水化合物溶液的花瓶寿命都没有超过水的控制。 ,“ Polo”,“ Verdi”或“ Versilia”,尽管花瓶寿命因品种而异。用脱落酸,抗坏血酸,吉贝酸,吲哚乙酸或槲皮素溶液脉动不会使切罗莎“夏洛特”或“自由”的花瓶寿命产生明显变化。但是,这些脉冲可能影响了碳水化合物的含量。;一些报告表明,百合属植物对乙烯不敏感,而其他报告则表明并非如此。先前的报告表明,“ Stargazer”在冷藏后对乙烯的敏感性增加。我们假设敏感性的差异可能是由于碳水化合物状态,尤其是淀粉含量,可能由于冷暴露而改变。为了检验该假设,我们将不同遗传背景的百合用1-甲基环丙烯(1-MCP)或硫代硫酸银(STS)进行了预处理,然后将其暴露于两周的冷藏期中,随后用10 L&L-1乙烯进行处理。储存将切下的百合属植物“ Princess Amalia”,“ Red Alert”,“ Renoir”和“ Stargazer”的花瓶寿命分别减少了4.1、5.5、5.8和2.0天。贮藏降低了花椰菜淀粉含量和叶片蔗糖含量,但增加了花椰菜蔗糖和果糖含量。碳水化合物含量变化的幅度取决于品种。花瓶生活与花被,茎和心皮中的淀粉呈正相关,与叶子中的蔗糖呈正相关,而与花被中的蔗糖呈负相关。乙烯处理缩短了“红色警报”中花瓶的寿命,而使用1-MCP或STS预处理则增加了“红色警报”和“雷诺阿”中花瓶的寿命。花瓶寿命评估期间的收获后芽瘟仅因品种不同而不同,“红色警戒”和“雷诺阿”的每茎芽数分别为0至0.24个;高温下百合属植物“威猛(Vermeer)”和“炫目(Dazzle)”的花瓶寿命降低,但在生产过程中不要过低光线。高和低生产温度之间第一年的“维米尔(Vermeer)”花瓶和第二年和第三年的“炫目”(Dazzle)花瓶寿命之间的差异分别为0.5天,3.0天和1.2天。但是,弱光和高温都减少了适销的茎(具有三个或三个以上芽的茎)的数量。每箱20个茎中,低光照在第2年和第3年分别使可销售茎的数量减少了4.5和5.0个茎,而高温在第2年和第3年使可销售茎减少了10.2和12.4个茎。, 分别。在研究的第一年(2.6天),较高的生产温度降低了向日葵“ Sunbright”的花瓶寿命,而在第二年,它受到光和温度的相互作用的影响,在高温下花瓶的寿命趋于减少,阴凉的花瓶更易使用低温下的花瓶寿命,但高温下的花瓶寿命缩短。在10%的夜间温度下以30%的阴影生长的茎,向日葵在第2年中的最长花瓶寿命为15.5天,而在20°C的条件下以30%的阴影生长的茎的最短花瓶寿命为10.2天。温度和光照均不会影响向日葵在第3年的花瓶寿命。温度和光照会影响第2年和第3年在百合和向日葵中采样的碳水化合物,但是碳水化合物对花瓶的寿命和百合质量的影响要大于向日葵。当收集来自百合属植物茎的芽进行采样时,花瓶的寿命与花椰菜糖含量无关,但与叶子,茎和非花序花序组织中的碳水化合物含量有关。在第2年,向日葵花瓶寿命的变化与叶片,茎,射线小花和非射线小花序花序组织中不同碳水化合物的变化相关,但在第3年,花瓶寿命仅与射线小花中的蔗糖成正相关。

著录项

  • 作者

    Locke, Emma Louise.;

  • 作者单位

    North Carolina State University.;

  • 授予单位 North Carolina State University.;
  • 学科 Agriculture Horticulture.
  • 学位 Ph.D.
  • 年度 2010
  • 页码 246 p.
  • 总页数 246
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号