首页> 外文学位 >Phase diagram approach to fabricating electro-active flexible films: Highly conductive, stretchable polymeric solid electrolytes and cholesteric liquid crystal flexible displays.
【24h】

Phase diagram approach to fabricating electro-active flexible films: Highly conductive, stretchable polymeric solid electrolytes and cholesteric liquid crystal flexible displays.

机译:制造电活性柔性薄膜的相图方法:高导电,可拉伸的聚合物固体电解质和胆甾型液晶柔性显示器。

获取原文
获取原文并翻译 | 示例

摘要

The ultimate goal of this work is to fabricate self-standing polymer lithium electrolytes and flexible reflective liquid crystal displays by first understanding the equilibrium phase behavior of their constituent mixtures. The isotropic phase facilitates processing and allows better control of the final morphology. It is anticipated that ionic conductivity in polymer lithium electrolytes is favored with isotropic morphology which means that initial amorphous structure should be preserved in the final self-standing membranes. On the other hand, phase separation induced by polymerization is a necessary condition to generate cholesteric liquid crystal dispersions.;To understand the effect of morphology on the ionic conductivity, a ternary phase diagram of polyethylene oxide (PEO), succinonitrile (SCN) and lithium bis(trifluoromethanesulfonyl)imide (LiTFSI) was established. Ionic conductivity was found to improve in the isotropic region containing high concentrations of SCN. Later, polyethylene glycol diacrylate (PEGDA) having a lower molecular weight of 700 g/mol was used in lieu of PEO and a room temperature ternary phase diagram of PEGDA/SCN/LiTFSI was constructed. Isotropic membranes with ionic conductivities between 10-5 S/cm to 10-3 S/cm at room temperature were achieved. Furthermore, membranes fabricated with PEGDA having a molecular weight of 6000 g/mol, SCN and LiTFSI have a higher ionic conductivity of 2.9x10-3 S/cm at room temperature and increase to 10-2 S/cm at 60 C. This material also exhibits stronger tensile strength and modulus that can be further improved with the addition of trimethylolpropane triacrylate (TMPTA) crosslinker.;The fabrication of polymer dispersed cholesteric liquid crystals (CLC) was carried out by first studying the phase behavior of EMA/TMPTA/CLC mixtures. Ternary phase diagram of EMA, TMPTA and CLC was constructed in order to identify the isotropic region necessary to select an appropriate precursor mixture. Reflectivity and electro-optical properties of final displays were characterized showing that the CLC domains are switchable even under deformation. Finally, the mechanical peel strength of the flexible display was improved by adding small concentrations of glycidyl methacrylate (GMA) as a dual curing agent. GMA can be integrated to the polyacrylate network through its acrylate group. A post thermal curing process is employed to activate the ring opening polymerization of epoxy groups of GMA with a thermal crosslinker such as trimellitic anhydride (TMA). During the peel tests, the regular displays containing no GMA fail at the interface between the polymer network and the substrate surface. On the other hand, materials containing GMA exhibit a fractured seismic periodic striation pattern that propagates through the crosslinked network. This stick-slip fracture behavior is a typical signature of strong adhesives, implying that GMA significantly improves peel strength up to 85 % relative to those of the cured materials containing no GMA. Supported by National Science Foundation: Award Numbers NSF-STTR 1010240 (with KDI) and NSF-DMR 1161070.
机译:这项工作的最终目标是通过首先了解它们的组成混合物的平衡相行为来制造自立式聚合物锂电解质和柔性反射液晶显示器。各向同性相有利于加工并允许更好地控制最终形态。可以预料,聚合物锂电解质中的离子电导率具有各向同性的形态,这意味着初始的无定形结构应保留在最终的自立式膜中。另一方面,聚合引起的相分离是产生胆甾型液晶分散体的必要条件。要了解形态对离子电导率的影响,请参阅聚环氧乙烷(PEO),丁二腈(SCN)和锂的三元相图。建立了双(三氟甲磺酰基)酰亚胺(LiTFSI)。发现离子导电性在含有高浓度SCN的各向同性区域中得到改善。随后,使用具有较低分子量700 g / mol的聚乙二醇二丙烯酸酯(PEGDA)代替PEO,并绘制了PEGDA / SCN / LiTFSI的室温三元相图。获得了在室温下离子电导率在10-5 S / cm至10-3 S / cm之间的各向同性膜。此外,用分子量为6000 g / mol的PEGDA,SCN和LiTFSI制成的膜在室温下的离子电导率更高,为2.9x10-3 S / cm,在60℃时增加到10-2 S / cm。这种材料还表现出更强的拉伸强度和模量,可以通过添加三羟甲基丙烷三丙烯酸酯(TMPTA)交联剂进一步改善。;首先研究EMA / TMPTA / CLC的相行为,从而制备了聚合物分散的胆甾型液晶(CLC)。混合物。构建了EMA,TMPTA和CLC的三元相图,以识别选择合适的前体混合物所需的各向同性区域。最终显示器的反射率和电光特性的特征在于,即使在变形下,CLC域也是可切换的。最后,通过添加少量的甲基丙烯酸缩水甘油酯(GMA)作为双重固化剂,可以改善柔性显示器的机械剥离强度。 GMA可以通过其丙烯酸酯基团集成到聚丙烯酸酯网络中。采用后热固化工艺以通过热交联剂(例如偏苯三酸酐(TMA))来活化GMA环氧基的开环聚合。在剥离测试期间,不包含GMA的常规显示器在聚合物网络和基材表面之间的界面处失效。另一方面,含有GMA的材料表现出断裂的地震周期性条纹图案,该图案通过交联网络传播。这种粘滑断裂行为是强力粘合剂的典型特征,这意味着相对于不含GMA的固化材料,GMA显着提高了高达85%的剥离强度。国家科学基金会资助:奖项编号NSF-STTR 1010240(含KDI)和NSF-DMR 1161070。

著录项

  • 作者

    Echeverri, Mauricio.;

  • 作者单位

    The University of Akron.;

  • 授予单位 The University of Akron.;
  • 学科 Chemistry Polymer.
  • 学位 Ph.D.
  • 年度 2012
  • 页码 229 p.
  • 总页数 229
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号