首页> 外文学位 >Thermoelasticity of Hexagonal Close-Packed Iron from the Phonon Density of States.
【24h】

Thermoelasticity of Hexagonal Close-Packed Iron from the Phonon Density of States.

机译:从状态声子密度看六角形密堆积铁的热弹性。

获取原文
获取原文并翻译 | 示例

摘要

This thesis explores the vibrational thermodynamic and thermoelastic properties of pure hexagonal close-packed iron (ϵ-Fe), in an effort to improve our understanding of the properties of a significant fraction of this remote region of the deep Earth and in turn, better constrain its composition.;We determined the Debye sound velocity (vD) at each of our compression points from the low-energy region of the phonon DOS and our in situ measured volumes. In turn, vD is related to the compressional and shear sound velocities via our determined densities and the adiabatic bulk modulus. Our high-statistical quality dataset places a new tight constraint on the density dependence of ϵ-Fe's sound velocities to outer core pressures. Via comparison with existing data for iron alloys, we investigate how nickel and candidate light elements for the core affect the thermoelastic properties of iron. In addition, we explore the effects of temperature on ϵ-Fe's sound velocities by applying pressure- and temperature-dependent elastic moduli from theoretical calculations to a finite-strain model. Such models allow for direct comparisons with one-dimensional seismic models of Earth's solid inner core (e.g., the Preliminary Reference Earth Model).;Next, the volume dependence of the vibrational free energy is directly related to the vibrational thermal pressure, which we combine with previously reported theoretical values for the electronic and anharmonic thermal pressures to find the total thermal pressure of ϵ-Fe. In addition, we found a steady increase in the Lamb-Mössbauer factor with compression, which suggests restricted thermal atomic motions at outer core pressures. This behavior is related to the high-pressure melting behavior of ϵ-Fe via Gilvarry's reformulation of Lindemann's melting criterion, which we used to obtain the shape of ϵ-Fe's melting curve up to 171 GPa. By anchoring our melting curve shape with experimentally determined melting points and considering thermal pressure and anharmonic effects, we investigated ϵ-Fe's melting temperature at the pressure of the inner-core boundary (ICB, P = 330 GPa), where Earth's solid inner core and liquid outer core are in contact. Then, combining this temperature constraint with our thermal pressure, we determined the density of ϵ-Fe under ICB conditions, which offers information about the composition of Earth's core via the seismically inferred density at the ICB.;In addition, the shape of the phonon DOS remained similar at all compression points, while the maximum (cutoff) energy increased regularly with decreasing volume. As a result, we were able to describe the volume dependence of ϵ-Fe's total phonon DOS with a generalized scaling law and, in turn, constrain the ambient temperature vibrational Grüneisen parameter. We also used the volume dependence of our previously mentioned vD to determine the commonly discussed Debye Grüneisen parameter, which we found to be ∼10% smaller than our vibrational Grüneisen parameter at any given volume. Finally, applying our determined vibrational Grüneisen parameter to a Mie-Grüneisen type relationship and an approximate form of the empirical Lindemann melting criterion, we predict the vibrational thermal pressure and estimate the high-pressure melting behavior of ϵ-Fe at Earth's core pressures, which can be directly compared with our previous results.;Finally, we use our measured vibrational kinetic energy and entropy to approximate ϵ-Fe's vibrational thermodynamic properties to outer core pressures. In particular, the vibrational kinetic energy is related to the pressure- and temperature-dependent reduced isotopic partition function ratios of ϵ-Fe and in turn, provide information about the partitioning behavior of solid iron in equilibrium processes. In addition, the volume dependence of vibrational entropy is directly related to the product of ϵ-Fe's vibrational component of the thermal expansion coefficient and the isothermal bulk modulus, which we find to be independent of pressure (volume) at 300 K. In turn, this product gives rise to the volume-dependent thermal expansion coefficient of ϵ-Fe at 300 K via established EOS parameters, and the vibrational Grüneisen parameter and temperature dependence of the vibrational thermal pressure via thermodynamic definition. (Abstract shortened by UMI.).
机译:本论文探索了纯六角密堆积铁(ϵ -Fe)的振动热力学和热弹性性质,以努力增进我们对深部地球偏远地区很大一部分的性质的了解,从而更好地理解我们从声子DOS的低能区域和现场测量的体积确定了每个压缩点的德拜声速(vD)。反过来,vD通过我们确定的密度和绝热体积模量与压缩和切变声速有关。我们的高统计质量数据集对ϵ -Fe的声速对外部核心压力的密度依赖性提出了新的严格约束。通过与铁合金的现有数据进行比较,我们研究了镍和铁心候选轻元素如何影响铁的热弹性。此外,我们通过将压力和温度相关的弹性模量从理论计算应用于有限应变模型来探索温度对-Fe声速的影响。这样的模型可以直接与地球固体内核的一维地震模型(例如,初步参考地球模型)进行比较。接下来,振动自由能的体积依赖性与振动热压力直接相关,我们将其组合用先前报道的电子和非谐热压的理论值来求出ε-Fe的总热压。此外,我们发现随着压缩,Lamb-Mössbauer因子稳步增加,这表明在外部核心压力下受限制的热原子运动。此行为与吉尔弗里(Gilvarry)对Lindemann熔化准则的重新制定与ϵ -Fe的高压熔化行为有关,我们使用该准则来获得高达171 GPa的ϵ -Fe的熔化曲线。通过将熔解曲线的形状与实验确定的熔点结合起来,并考虑热压和非谐效应,我们在内核固体边界(ICB,P = 330 GPa)的压力下研究了ε-Fe的熔融温度与液体外芯接触。然后,将温度限制条件与我们的热压力相结合,我们确定了ICB条件下的ϵ -Fe的密度,该密度通过ICB的地震推断密度提供了有关地核成分的信息。声子DOS在所有压缩点都保持相似,而最大(截止)能量随体积减小而有规律地增加。结果,我们能够用广义的比例定律描述ε-Fe的总声子DOS的体积依赖性,进而约束环境温度振动Grüneisen参数。我们还使用了前面提到的vD的体积依赖性来确定通常讨论的DebyeGrüneisen参数,我们发现它在任何给定体积下都比我们的振动Grüneisen参数小约10%。最后,将确定的振动Grüneisen参数应用于Mie-Grüneisen类型关系和经验Lindemann熔化准则的近似形式,我们预测了振动热压力,并估计了在地心压力下ϵ -Fe的高压熔化行为,最后,我们可以使用测得的振动动能和熵来近似-Fe的振动热力学性质,以适应外部堆芯压力。特别地,振动动能与ε-Fe的压力和温度相关的降低的同位素分配函数比率有关,进而提供有关固体铁在平衡过程中分配行为的信息。此外,振动熵的体积依赖性与-Fe的热膨胀系数和等温体积模量的振动分量的乘积直接相关,我们发现它与300 K下的压力(体积)无关。 ,通过建立的EOS参数,该乘积在300 K下产生与体积有关的ε-Fe热膨胀系数,并通过热力学定义得出振动Grüneisen参数和振动热压的温度依赖性。 (摘要由UMI缩短。)。

著录项

  • 作者

    Murphy, Caitlin A.;

  • 作者单位

    California Institute of Technology.;

  • 授予单位 California Institute of Technology.;
  • 学科 Geophysics.;Engineering Materials Science.
  • 学位 Ph.D.
  • 年度 2012
  • 页码 175 p.
  • 总页数 175
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号