首页> 外文学位 >Adaptive Clock Design for Memory Intensive 3D Integrated Circuits.
【24h】

Adaptive Clock Design for Memory Intensive 3D Integrated Circuits.

机译:内存密集型3D集成电路的自适应时钟设计。

获取原文
获取原文并翻译 | 示例

摘要

Three-dimensional integrated circuit (3D IC) technology provides promising benefits for advanced digital system designs. The technology not only helps to overcome the interconnect wire delay barrier by greatly shortening the wire length from a 2D system, but also provides a solution to the well-known memory wall problem by stacking multiple logic and memory dies and connecting them with Through-Silicon-Vias (TSVs). All these features make 3D IC technology an attractive option for the memory intensive integrated system.;Clock distribution is critical to a digital system design. When a system is implemented in 3D technologies, it is more challenging to control the clock skew due to cross-die process variations, high thermal gradients and non-idealities of TSVs. Previous de-skew techniques for 2D ICs, like delay-buffer insertion and active de-skew, introduce large overhead, require complicated analysis, and are unable to compensate the clock distribution errors caused by TSVs and cross-die variations in 3D ICs. Recently proposed 3D clock network designs either do not have the capability to handle cross-tier variations, or oversimplify the effects of TSVs. To implement accurate and balanced clock distribution in 3D ICs, a new adaptive clock topology and de-skew technique are needed.;In this work, new technologies are developed to handle the challenges in 3D clock distribution. Firstly, a new 3D clock distribution topology without H-tree structure is proposed to achieve high quality and good cost-efficiency. Secondly, a novel return-signal de-skew method is developed to handle the cross-tier variations and the 3D wiring asymmetry. Thirdly, to achieve de-skew in a single stage of delay buffer, a phase-mixer based tunable-delay-buffer (TDB) circuit is designed that is tunable in 360 degrees and has good tolerance to process, voltage, and temperature (PVT) variations. Based on these techniques, an accurate and highly adaptive clock distribution network can be implemented in 3D integrated systems.;The proposed adaptive clock design technologies were validated in a chip fabricated in the IBM 7RF 180nm CMOS process. Three transmission line based clock paths with different wire lengths (1.5mm, 3mm, and 4.5mm) were created for testing the return-signal de-skew technology. The measurement results show that, at 1GHz clock frequency, the de-skew technology is able to reduce the clock skews from 440ps to 40ps.;In order to evaluate the effectiveness of the proposed adaptive clock design techniques, design case study is performed. Moreover, a design optimization flow based on thermal profiles is developed to minimize the power and area overhead of the TDB insertion and further improves the adaptive clock network.;In addition to the adaptive clock design methodology, this work also includes the development of other tools and techniques to facilitate memory-intensive 3D IC designs. Memory models, a process-design-kit (PDK) and design tools are developed. A memory generator tool is developed based on timing, power models and 3D PDK. An SRAM chip with on-chip access time measurement was also fabricated in a real process and it proves the benefits of 3D integration.
机译:三维集成电路(3D IC)技术为高级数字系统设计提供了可观的好处。该技术不仅可以通过大大缩短2D系统的布线长度来帮助克服互连布线的延迟障碍,而且还可以通过堆叠多个逻辑和存储管芯并将它们与直通硅片连接来解决众所周知的存储墙问题。 -Vias(TSV)。所有这些功能使3D IC技术成为内存密集型集成系统的有吸引力的选择。时钟分配对于数字系统设计至关重要。当系统以3D技术实现时,由于跨芯片工艺变化,高热梯度和TSV的非理想性,控制时钟偏斜更具挑战性。以前的2D IC偏移校正技术(例如延迟缓冲器插入和有源偏移校正)会带来较大的开销,需要复杂的分析,并且无法补偿由TSV和3D IC中的跨芯片差异引起的时钟分配误差。最近提出的3D时钟网络设计要么没有能力处理跨层变化,要么过分简化了TSV的影响。为了在3D IC中实现准确且平衡的时钟分配,需要一种新的自适应时钟拓扑和偏斜技术。在这项工作中,开发了一些新技术来应对3D时钟分配中的挑战。首先,提出了一种新的不具有H树结构的3D时钟分配拓扑,以实现高质量和良好的成本效益。其次,开发了一种新颖的返回信号偏斜方法来处理跨层变化和3D布线不对称问题。第三,为了在单级延迟缓冲器中实现偏斜,设计了基于相位混合器的可调延迟缓冲器(TDB)电路,该电路可在360度范围内进行可调,并且对过程,电压和温度具有良好的容忍度(PVT) ) 变化。基于这些技术,可以在3D集成系统中实现精确且高度自适应的时钟分配网络。所提出的自适应时钟设计技术已在IBM 7RF 180nm CMOS工艺制造的芯片中得到验证。创建了三个具有不同导线长度(1.5mm,3mm和4.5mm)的基于传输线的时钟路径,以测试返回信号偏移技术。测量结果表明,在1GHz时钟频率下,去偏斜技术能够将时钟偏斜从440ps减少到40ps。为了评估所提出的自适应时钟设计技术的有效性,进行了设计案例研究。此外,还开发了基于热曲线的设计优化流程,以最大程度地减少TDB插入的功率和面积开销,并进一步改善自适应时钟网络。;除了自适应时钟设计方法论之外,这项工作还包括其他工具的开发和有助于存储器密集型3D IC设计的技术。开发了内存模型,过程设计工具包(PDK)和设计工具。基于时序,功耗模型和3D PDK开发了一种存储器生成器工具。还在实际过程中制造了具有片上访问时间测量功能的SRAM芯片,它证明了3D集成的优势。

著录项

  • 作者

    Chen, Xi.;

  • 作者单位

    North Carolina State University.;

  • 授予单位 North Carolina State University.;
  • 学科 Engineering Electronics and Electrical.
  • 学位 Ph.D.
  • 年度 2012
  • 页码 119 p.
  • 总页数 119
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号