首页> 外文学位 >Large-eddy simulation of in-cylinder flows in motored reciprocating-piston internal combustion engines.
【24h】

Large-eddy simulation of in-cylinder flows in motored reciprocating-piston internal combustion engines.

机译:电动往复活塞式内燃机缸内流动的大涡模拟。

获取原文
获取原文并翻译 | 示例

摘要

Two key bottlenecks prevent engines from reaching their performance, efficiency, and emissions potential. The first bottleneck is limited understanding of turbulence hydrodynamics for in-cylinder flows including cycle-to-cycle variations (CCV), and the second one is the absence of an objective approach for making quantitative comparisons between simulation and experiment, beyond ensemble averaging. In this thesis, the CCV phenomenon in IC engines and its effects on IC-engine performance are introduced. Previous studies of CCV, its root causes, and its in uences on engine performance are reviewed. The limitations of current practices for IC engine simulation and analysis are discussed. Large-eddy simulation (LES) has shown promise in internal combustion (IC) engine applications, and proper orthogonal decomposition (POD) has been proposed as an objective way to analyze complex turbulent flows and to make comprehensive comparisons between simulation and measurements.;In the research performed here, LES and POD have been performed for two simplified motored IC engines: the Imperial College piston-cylinder assembly with and without swirl and the Transparent Combustion Chamber (TCC) engine. For the first configuration, the sensitivity of LES to key numerical and physical model parameters has been investigated. Results are especially sensitive to mesh and to the subfilter-scale (SFS) turbulence models. Satisfactory results can be obtained using simple viscosity-based SFS turbulence models, although there is room for improvement. No single model gives uniformly best agreement between model and measurements at all spatial locations and at all times. Compared to Reynolds-averaged Navier-Stokes (RANS) modeling, LES shows advantages in accuracy and in capturing more details of the complex in-cylinder flow dynamics. In particular, LES is able to capture CCV using computational meshes that are comparable to those that are used for RANS, in that case, the high computational cost of LES is mainly due to the need to compute multiple engine cycles. POD is then used to study the dynamics of the in-cylinder turbulent flow. Systematic parametric studies are performed, including two-dimensional (2-D) POD versus three-dimensional (3-D) POD, phase-dependent POD versus phase-invariant POD, and sensitivities of POD mode structure and mode convergence rate to spatial and temporal resolution. The use of POD to identify and quantify CCV is explored, and the ability of POD to distinguish between organized and disorganized flows is demonstrated.;The LES and POD experience from the piston-cylinder assembly is then extended to a more realistic engine configuration (TCC engine) with full four-stroke motored cycles, where detailed particle image velocimetry (PIV) measurements are being made. The complex in-cylinder flows, including characterization of CCV, are analyzed by using LES and POD. Initial quantitative comparisons with PIV measurements are also performed. It is found that many of the key conclusions that were drawn from the POD analysis of the piston-cylinder assembly carry over to the more realistic engine. This suggests that the POD tools that have been developed will be useful in analyzing real engine flows.
机译:两个关键瓶颈阻止引擎发挥其性能,效率和排放潜力。第一个瓶颈是对缸内流动的湍流流体力学(包括周期变化(CCV))的了解有限,第二个瓶颈是除了集成平均以外,缺乏一种客观的方法来进行模拟和实验之间的定量比较。本文介绍了内燃机中的CCV现象及其对内燃机性能的影响。回顾了CCV的先前研究,其根本原因及其对发动机性能的影响。讨论了目前用于IC引擎仿真和分析的实践的局限性。大涡模拟(LES)在内燃机(IC)发动机应用中显示出了希望,并且提出了适当的正交分解(POD)作为分析复杂湍流并在模拟和测量之间进行全面比较的客观方法。在这里进行的研究中,LES和POD是针对两种简化的电动IC发动机进行的:带有和不带有涡旋的帝国理工学院活塞缸组件以及透明燃烧室(TCC)发动机。对于第一种配置,已经研究了LES对关键数值和物理模型参数的敏感性。结果对网格和子过滤器尺度(SFS)湍流模型特别敏感。尽管有改进的余地,但使用基于粘度的简单SFS湍流模型可以获得令人满意的结果。在所有空间位置以及任何时候,没有一个单一的模型能够在模型和测量之间给出一致的最佳一致性。与雷诺平均的Navier-Stokes(RANS)建模相比,LES在准确性和捕获复杂缸内流动动力学的更多细节方面显示出优势。特别是,LES能够使用与用于RANS的计算网格相当的计算网格捕获CCV,在这种情况下,LES的高计算成本主要是由于需要计算多个发动机循环。然后将POD用于研究缸内湍流的动力学。进行了系统的参数研究,包括二维(2-D)POD与三维(3-D)POD,相依POD与相不变POD,以及POD模式结构的敏感性和模式对空间和空间的收敛速度时间分辨率。探究了使用POD识别和量化CCV的能力,并展示了POD区分有组织和无组织流的能力。;然后将来自活塞缸组件的LES和POD经验扩展到更现实的发动机配置(TCC)发动机)具有完整的四冲程摩托车,其中将进行详细的颗粒图像测速(PIV)测量。使用LES和POD分析复杂的缸内流,包括CCV的特征。还进行了与PIV测量的初始定量比较。我们发现,从活塞-气缸总成的POD分析得出的许多关键结论都可以推广到更实际的发动机上。这表明已开发的POD工具将对分析实际发动机流量很有用。

著录项

  • 作者

    Liu, Kai.;

  • 作者单位

    The Pennsylvania State University.;

  • 授予单位 The Pennsylvania State University.;
  • 学科 Engineering Mechanical.
  • 学位 Ph.D.
  • 年度 2012
  • 页码 182 p.
  • 总页数 182
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号